Response of single units in the amygdala to stimulation of buffer nerves in cat

1983 ◽  
Vol 244 (5) ◽  
pp. R646-R651 ◽  
Author(s):  
D. F. Cechetto ◽  
F. R. Calaresu

Electrical activity of spontaneously active units in the amygdala of 19 chloralose-anesthetized cats was monitored for changes in firing frequency during electrical stimulation of the carotid sinus (CSN) and aortic depressor (ADN) nerves. Stimulation of the CSN altered the firing frequency of 30% (73/241) of the units on both sides of the amygdala. Of these units, 47% were excited and 53% were inhibited. Stimulation of the ADN elicited a change in firing frequency of 20% (50/251) of ipsi- and contralateral units. Of these, 68% were excited and the remainder were inhibited. The average latency for all CSN responses (53 +/- 4.0 ms) was significantly longer than the average latency for ADN responses (35 +/- 3.3 ms). The majority of the responsive units were located in the central and lateral nuclei of the amygdala. Spontaneously firing units responding to both CSN and ADN stimulation were found infrequently (7%, 14/188). These results indicate that the two buffer nerves project to specific regions within the amygdala, but the CSN and the ADN follow separate pathways probably involved in reflex arcs mediating different physiological responses.

1980 ◽  
Vol 239 (1) ◽  
pp. R130-R136 ◽  
Author(s):  
F. R. Calaresu ◽  
J. Ciriello

In 18 cats anesthetized with chloralose, electrical activity of spontaneously active hypothalamic units was monitored for changes in firing frequency during electrical stimulation of carotid sinus (CSN) and aortic depressor (ADN) nerves and the nucleus tractus solitarius (NTS). Stimulation of the CSN altered the activity of 55% (381/691) of the tested. These responsive units were widely distributed in the ipsi- and contralateral hypothalamus. Of the units tested during stimulation of the ADN only 6% (17/274) changed their firing frequency. Responsive units were located only on the ipsilateral side and primarily in the paraventricular and supraoptic nuclei, Electrical stimulation of the NTS altered the firing frequency of all 84 hypothalamic units previously identified by stimulation of the CSN. NTS stimulation elicited responses that had a significantly shorter latency and followed significantly higher frequencies of stimulation when compared to stimulation of the CSN. These results demonstrate that the two buffer nerves have distinctly different central projections to the hypothalamus and suggest different functional roles for the ADN and CSN in homeostatic regulatory mechanisms mediated by the hypothalamus.


2020 ◽  
Vol 43 (10) ◽  
pp. 1057-1067 ◽  
Author(s):  
Gean Domingos-Souza ◽  
Fernanda Machado Santos-Almeida ◽  
César Arruda Meschiari ◽  
Nathanne S. Ferreira ◽  
Camila A. Pereira ◽  
...  

1988 ◽  
Vol 64 (4) ◽  
pp. 1337-1345 ◽  
Author(s):  
J. S. Jodkowski ◽  
A. J. Berger

The purpose of this study is to analyze the reflex effects of laryngeal afferent activation on respiratory patterns in anesthetized, vagotomized, paralyzed, ventilated cats. We recorded simultaneously from the phrenic nerve, T10 internal intercostal nerve, and single bulbospinal expiratory neurons of the caudal ventral respiratory group (VRG). Laryngeal afferents were activated by electrical stimulation of the superior laryngeal nerve (SLN) or by cold-water infusion into the larynx. Both types of stimuli caused inhibition of phrenic activity and facilitation of internal intercostal nerve activity, indicating expiratory effort. The activity of 46 bulbospinal expiratory cells was depressed during SLN electrical stimulation, and 13 of them were completely inhibited. In 44 of 56 neurons tested, mean firing frequency (FFmean) was decreased in response to cold-water infusion and 8 others responded with increased FFmean; in the remaining 4 neurons, FFmean was unchanged. Possible reasons for different neuronal responses to SLN electrical stimulation and water infusion are discussed. We conclude that bulbospinal expiratory neurons of VRG were not the source of the reflex motoneuronal expiratory-like activity produced by SLN stimulation. Other, not yet identified inputs to spinal expiratory motoneurons are activated during this experimental condition.


1969 ◽  
Vol 51 (2) ◽  
pp. 387-396
Author(s):  
I. D. MCFARLANE

1. Electrical activity has been recorded from the sphincter region of Calliactis parasitica during the behavioural sequence in which the anemone detaches from the substrate and attaches to a Buccinum shell. The ectodermal slow-conduction system (SS1) fires repetitively, the majority of observed pulses occurring in the period prior to detachment (a typical example is 25 SS1pulses at an average frequency of 1 pulse/7 sec.). Shell-tentacle contact is essential for stimulation of SS1activity. 2. Mechanical stimulation of the column excites the SS1, and 30 stimuli at a frequency of about one shock/5 sec. give pedal disk detachment. 3. Electrical stimulation of the ectoderm excites the SS1and about 30 stimuli at frequencies between one shock/3 sec. and one shock/9 sec. produce detachment. Detachment and the SS1 have an identical stimulus threshold. It is concluded that detachment is co-ordinated by the SS1.


1983 ◽  
Vol 245 (6) ◽  
pp. R811-R819 ◽  
Author(s):  
D. F. Cechetto ◽  
F. R. Calaresu

Spontaneously firing units in the region of parabrachial nuclei (PB) and Kolliker-Fuse nuclei (KF) of 19 chloralose-anesthetized cats were monitored for changes in firing frequency during electrical stimulation of carotid sinus (CSN) and aortic depressor (ADN) nerves, of central nucleus of the amygdala (ACE), and of paraventricular nuclei of the hypothalamus (PVH). In the ipsilateral PB 64 of 189 and in the contralateral PB 9 of 103 units responded to CSN stimulation; 18 of 185 ipsilaterally and 7 of 97 contralaterally responded to ADN stimulation. Responses were primarily excitatory, and units were located primarily in the ventrolateral portion of the PB. Only 9 of 267 units responded to stimulation of both CSN and ADN. Stimulation of the ACE and PVH antidromically activated 9 and 7 units, respectively, in PB and approximately half of these also responded to buffer nerve stimulation. In the ipsilateral PB 56 of 207 and in the contralateral PB 11 of 103 units responded orthodromically to ACE stimulation, and 23 of 177 ipsilaterally and 2 of 103 contralaterally responded orthodromically to PVH stimulation with primarily excitatory responses and were located primarily in the ventrolateral portion of the PB and KF. Of these units approximately half also responded to buffer nerve stimulation. These results suggest an important role for PB-KF in mediating ascending and descending cardiovascular and respiratory control signals.


1991 ◽  
Vol 70 (6) ◽  
pp. 2539-2550 ◽  
Author(s):  
F. A. Hopp ◽  
J. L. Seagard ◽  
J. Bajic ◽  
E. J. Zuperku

Respiratory responses arising from both chemical stimulation of vascularly isolated aortic body (AB) and carotid body (CB) chemoreceptors and electrical stimulation of aortic nerve (AN) and carotid sinus nerve (CSN) afferents were compared in the anesthetized dog. Respiratory reflexes were measured as changes in inspiratory duration (TI), expiratory duration (TE), and peak averaged phrenic nerve activity (PPNG). Tonic AN and AB stimulations shortened TI and TE with no change in PPNG, while tonic CSN and CB stimulations shortened TE, increased PPNG, and transiently lengthened TI. Phasic AB and AN stimulations throughout inspiration shortened TI with no changes in PPNG or the following TE; however, similar phasic stimulations of the CB and CSN increased both TI and PPNG and decreased the following TE. Phasic AN stimulation during expiration decreased TE and the following TI with no change in PPNG. Similar stimulations of the CB and CSN decreased TE; however, the following TI and PPNG were increased. These findings differ from those found in the cat and suggest that aortic chemoreceptors affect mainly phase timing, while carotid chemoreceptors affect both timing and respiratory drive.


Sign in / Sign up

Export Citation Format

Share Document