scholarly journals Co-Ordination of Pedal-Disk Detachment in the Sea Anemone Calliactis Parasitica

1969 ◽  
Vol 51 (2) ◽  
pp. 387-396
Author(s):  
I. D. MCFARLANE

1. Electrical activity has been recorded from the sphincter region of Calliactis parasitica during the behavioural sequence in which the anemone detaches from the substrate and attaches to a Buccinum shell. The ectodermal slow-conduction system (SS1) fires repetitively, the majority of observed pulses occurring in the period prior to detachment (a typical example is 25 SS1pulses at an average frequency of 1 pulse/7 sec.). Shell-tentacle contact is essential for stimulation of SS1activity. 2. Mechanical stimulation of the column excites the SS1, and 30 stimuli at a frequency of about one shock/5 sec. give pedal disk detachment. 3. Electrical stimulation of the ectoderm excites the SS1and about 30 stimuli at frequencies between one shock/3 sec. and one shock/9 sec. produce detachment. Detachment and the SS1 have an identical stimulus threshold. It is concluded that detachment is co-ordinated by the SS1.

1976 ◽  
Vol 64 (2) ◽  
pp. 419-429
Author(s):  
I. D. Lawn

1. Electrical activity has been recorded from Stomphia coccinea during the behavioural sequence in which the detached anemone settles on to a Modiolus shell. 2. When a responsive tentacle contacts the shell, a short, complex burst of pulses is elicited. These remain confined to the region of contact. The endodermal slow-conduction system (SS2) then begins to fire repetitively (a typical example is 16 SS2 pulses at a mean interpulse interval of 5 s) until the pedal disc begins to inflate. Shell-tentacle contact is essential for stimulation of SS2 activity. 3. The complete response, apart from local bending of the column, may be reproduced by electrical stimulation of the SS2 alone. As few as 10 stimuli at frequencies between 1 shock/s and 1 shock/10 s are required to elicit the response.


1984 ◽  
Vol 108 (1) ◽  
pp. 137-149
Author(s):  
IAN D. MCFARLANE

1. Single shocks to the column sometimes evoke tentacle contractions, ranging from slight movement of a few scattered tentacles to rapid bending or shortening of all the tentacles. Some individuals are more responsive than others. Complex bursts of electrical activity follow single shocks, but only in tentacles that contract. 2. These single shocks excite pulses in two conducting systems - the through-conducting nerve net (TCNN) and the ectodermal slow conduction system (SSI). When a single shock evokes contractions and bursts of electrical activity, these usually follow the SSI pulse, rarely the TCNN pulse. Stimulation of the SSI alone causes tentacle contraction in responsive anemones. 3. Fast tentacle contractions always follow the second of two closelyspaced TCNN pulses: the TCNN shows facilitation (Pantin, 1935a). An SSI pulse, however, does not facilitate subsequent pulses in either the SSI or TCNN. 4. There are two pathways for activation of tentacle contractions. The TCNN pathway is mechano-sensitive and normally requires facilitation. The SSI pathway is mechano- and chemosensitive, only requires a single SSI pulse to evoke contraction, but is very labile. It is proposed that the TCNN and the SSI do not excite the ectodermal muscles directly, but via a multipolar nerve net.


1970 ◽  
Vol 53 (1) ◽  
pp. 211-220
Author(s):  
I. D. McFARLANE

1. Dissolved food substances elicit preparatory feeding behaviour in the sea anemone Tealia felina. This behaviour takes the form of expansion of the oral disk and lowering of the margin of the disk. Food may also cause mouth opening and pharynx protrusion. This pre-feeding response may increase the chance of food capture. 2. The expansion and lowering of the oral disk can also be elicited by electrical stimulation of a slow conduction system, the SS1, thought to be located in the ectoderm. 3. SS1 activity is seen when the anemone is exposed to dissolved food substances. 4. It is concluded that preparatory feeding behaviour in Tealia is mediated in part by the SS1.


1976 ◽  
Vol 64 (2) ◽  
pp. 431-445
Author(s):  
I. D. McFarlane

1. Pulses in two slow conducting systems, the ectodermal SS 1 and the endodermal SS 2, were recorded during shell-climbing behaviour. The mean pulse interval of SS 1 pulses was 7–4 s and that of SS 2 pulses was 6-4 s. Activity in both systems may arise as a sensory response of tentacles to shell contact, but the SS 1 and SS 2 may not share the same receptors. 2. Electrical stimulation of the SS 1 and SS 2 together, at a frequency of 1 shock every 5 s, elicits shell-climbing behaviour in the absence of a shell. 3. Low-frequency nerve-net activity (about 1 pulse every 15 s) accompanies column bending during both normal and electrically elicited responses. This activity probably arises as a result of column bending and is not due to a sensory response to the shell.


1976 ◽  
Vol 65 (2) ◽  
pp. 381-393 ◽  
Author(s):  
P. A. Anderson

1. Electrical or mechanical stimulation of Goniopora lobata produces coordinated retraction of polyps in the colony. With repetitive stimulation, the response spreads in linear, radial increments which become successively smaller with each stimulus. 2. Electrical activity recorded from these colonies is interpreted as originating in a conduction system responsible for effecting the colonial retraction response. The electrical activity spreads incrementally through the colony in a similar manner to the behavioural response. 3. Various hypotheses have been proposed to account for such a spread of electrical acitvity. Of these, only interneural facilitation is of appreciable importance to Goniopora. 4. Temporary termination of a pathway, by the passage of an impulse through it, was found and interpreted as being an additional and important property of the colonial conduction system.


1969 ◽  
Vol 51 (2) ◽  
pp. 377-385 ◽  
Author(s):  
I. D. MCFARLANE

1. Suction electrodes record electrical activity associated with three conduction systems in the sea anemone Calliactis parasitica. The two slow systems (SS1 and SS2) are previously undescribed. The third system is the through-conduction system. 2. Evidence is given that the SS1 and SS2 are located in the ectoderm and endoderm respectively. The conductile elements have not been identified. 3. The conduction velocity of the SS1 is 4.4-14.6 cm./sec. at 11° C. and is highest in the oral disk. The SS2 velocity is 3.0-5.3 cm./sec. 4. Both slow systems show a marked increase in response delay on repetitive stimulation and fail at stimulation frequencies higher than one shock/3 sec.


1975 ◽  
Vol 62 (2) ◽  
pp. 421-432
Author(s):  
G. A. Shelton

1. The SS 1 fatigues in response to repetitive electrical stimulation. This fatigue is manifested by an increased conduction delay and a decreased SS 1 pulse amplitude. 2. Continued repetitive stimulation leads to the failure of the system. Recovery may take many seconds. Narrow strips of column fail more rapidly than wide strips. 3. The increased conduction delay is explained in terms of a decrease in the population of spiking cells. 4. A computer model is described and analysed. It suggests that conduction between electrically coupled ectoderm cells could be the basis for the SS1. The SS 1 may have properties not so far experimentally demonstrated; for example, under certain conditions it could behave as a local system.


Extracellular polythene suction electrodes have been used to record electrical activity in four species of Madreporaria - Dendrogyra cylindrus, Meandrina meandrites, Mussa angulosa and Eusmilia fastigiata . A colonial conduction system, believed to be the nerve net, was found in all species. It conducted without decrement between all polyps. A second colonial system was found in Meandrina, Mussa and Eusmilia . Pulses could be recorded only from tentacles or oral disks though the system could be excited by electrical or mechanical stimuli to any part of the colony. In the tentacles and oral disk, this conduction system had a refractory period of about 60 ms while in the column or interpolyp regions the refractory period was much longer - up to several seconds. The effect of these differences was to limit the frequency of conduction of pulses in this system between polyps. The second system is compared to the s. s. 1 (ectodermal slow conduction system) of the sea anemone Calliactis parasitica . It is the first demonstrated example of a colonial slow conduction system in the Hexacorallia and is similar in properties to a colonial slow conduction system previously described for Pennatula phosphorea (Octocorallia). The slow conduction system may have a rôle during feeding behaviour by promoting expansion of tentacles and the production of mucus.


1990 ◽  
Vol 63 (5) ◽  
pp. 1118-1127 ◽  
Author(s):  
L. Villanueva ◽  
K. D. Cliffer ◽  
L. S. Sorkin ◽  
D. Le Bars ◽  
W. D. Willis

1. Recordings were made in anesthetized monkeys from neurons in the medullary reticular formation (MRF) caudal to the obex. Responses of 19 MRF neurons to mechanical, thermal, and/or electrical stimulation were examined. MRF neurons exhibited convergence of nociceptive cutaneous inputs from widespread areas of the body and face. 2. MRF neurons exhibited low levels of background activity. Background activity increased after periods of intense cutaneous mechanical or thermal stimulation. Nearly all MRF neurons tested failed to respond to heterosensory stimuli (flashes, whistle sounds), and none responded to joint movements. 3. MRF neurons were excited by and encoded the intensity of noxious mechanical stimulation. Responses to stimuli on contralateral limbs were greater than those to stimuli on ipsilateral limbs. Responses were greater to stimuli on the forelimbs than to stimuli on the hindlimbs. 4. MRF neurons responded to noxious thermal stimulation (51 degrees C) of widespread areas of the body. Mean responses from stimulation at different locations were generally parallel to those for noxious mechanical stimulation. Responses increased with intensity of noxious thermal stimulation (45-50 degrees C). 5. MRF neurons responded with one or two peaks of activation to percutaneous electrical stimulation applied to the limbs, the face, or the tail. The differences in latency of responses to stimulating two locations along the tail suggested that activity was elicited by activation of peripheral fibers with a mean conduction velocity in the A delta range. Stimulation of the contralateral hindlimb elicited greater responses, with lower thresholds and shorter latencies, than did stimulation of the ipsilateral hindlimb. 6. Electrophysiological properties of monkey MRF neurons resembled those of neurons in the medullary subnucleus reticularis dorsalis (SRD) in the rat. Neurons in the caudal medullary reticular formation could play a role in processing nociceptive information. Convergence of nociceptive cutaneous input from widespread areas of the body suggests that MRF neurons may contribute to autonomic, affective, attentional, and/or sensory-motor processes related to pain.


Sign in / Sign up

Export Citation Format

Share Document