parabrachial nuclei
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 2)

H-INDEX

29
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Christopher H. Chen ◽  
Leannah N. Newman ◽  
Amanda P. Stark ◽  
Katherine E. Bond ◽  
Dawei Zhang ◽  
...  

In addition to its well-known contributions to motor control and motor learning, the cerebellum is involved in language, emotional regulation, anxiety, and affect1-4. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that could contribute to such functions, including the amygdala, basal forebrain, and septum, but that the classic cerebellar outputs, the deep cerebellar nuclei (DCN), do not project to these regions. Here we show that parabrachial nuclei (PBN) neurons that receive direct PC input, project to and influence all of these forebrain regions and many others. Furthermore, the function of this pathway is distinct from the canonical pathway: suppressing PC to PBN activity is aversive, whereas suppressing the PC to DCN pathway is rewarding. Therefore, the PBN pathway allows the cerebellum to influence the entire spectrum of valence, modulate the activity of forebrain regions known to regulate diverse nonmotor behaviors, and may be the substrate for many nonmotor disorders related to cerebellar dysfunction.



PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0243899
Author(s):  
Tobias Morville ◽  
Kristoffer H. Madsen ◽  
Hartwig R. Siebner ◽  
Oliver J. Hulme

Phasic dopamine release from mid-brain dopaminergic neurons is thought to signal errors of reward prediction (RPE). If reward maximisation is to maintain homeostasis, then the value of primary rewards should be coupled to the homeostatic errors they remediate. This leads to the prediction that RPE signals should be configured as a function of homeostatic state and thus diminish with the attenuation of homeostatic error. To test this hypothesis, we collected a large volume of functional MRI data from five human volunteers on four separate days. After fasting for 12 hours, subjects consumed preloads that differed in glucose concentration. Participants then underwent a Pavlovian cue-conditioning paradigm in which the colour of a fixation-cross was stochastically associated with the delivery of water or glucose via a gustometer. This design afforded computation of RPE separately for better- and worse-than expected outcomes during ascending and descending trajectories of serum glucose fluctuations. In the parabrachial nuclei, regional activity coding positive RPEs scaled positively with serum glucose for both ascending and descending glucose levels. The ventral tegmental area and substantia nigra became more sensitive to negative RPEs when glucose levels were ascending. Together, the results suggest that RPE signals in key brainstem structures are modulated by homeostatic trajectories of naturally occurring glycaemic flux, revealing a tight interplay between homeostatic state and the neural encoding of primary reward in the human brain.



2019 ◽  
Author(s):  
Cindy F. Yang ◽  
Euiseok J. Kim ◽  
Edward M. Callaway ◽  
Jack L. Feldman

AbstractThe key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various categorical inputs, e.g., volitional, physiological, emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex (BötC), the nucleus of the solitary tract (NTS), parafacial region (pFL/pFV or RTN/pFRG), and parabrachial nuclei, send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.



2018 ◽  
Author(s):  
Tobias Morville ◽  
Kristoffer Madsen ◽  
Hartwig R. Siebner ◽  
Oliver J. Hulme

Phasic dopamine release from mid-brain dopaminergic neurons signals errors of reward prediction (RPE). If reward maximisation is to maintain homeostasis, then the value of primary rewards should be coupled to the homeostatic errors they remediate. This leads to the prediction that RPE signals should be configured as a function of homeostatic state and thus, diminish with the attenuation of homeostatic error. To test this hypothesis, we collected a large volume of functional MRI data from five human volunteers on four separate days. After fasting for 12 hours, subjects consumed preloads that differed in glucose concentration. Participants then underwent a Pavlovian cue-conditioning paradigm in which the colour of a fixation-cross was stochastically associated with the delivery of water or glucose via a gustometer. This design afforded computation of RPE separately for better- and worse-than expected outcomes during ascending and descending trajectories of physiological serum glucose fluctuations. In the parabrachial nuclei, variations in regional activity coding positive RPEs scaled positively with serum glucose for ascending and descending glucose levels. The ventral tegmental area and substantia nigra became more sensitive to negative RPEs when glucose levels were ascending. Together, the results show that RPE signals in key brainstem structures are modulated by homeostatic trajectories of naturally occurring glycemic flux, revealing a tight interplay between homeostatic state and the neural encoding of primary reward in the human brain.



2016 ◽  
Vol 115 (3) ◽  
pp. 1314-1323 ◽  
Author(s):  
Madelyn A. Baez-Santiago ◽  
Emily E. Reid ◽  
Anan Moran ◽  
Joost X. Maier ◽  
Yasmin Marrero-Garcia ◽  
...  

The parabrachial nuclei of the pons (PbN) receive almost direct input from taste buds on the tongue and control basic taste-driven behaviors. Thus it is reasonable to hypothesize that PbN neurons might respond to tastes in a manner similar to that of peripheral receptors, i.e., that these responses might be narrow and relatively “dynamics free.” On the other hand, the majority of the input to PbN descends from forebrain regions such as gustatory cortex (GC), which processes tastes with “temporal codes” in which firing reflects first the presence, then the identity, and finally the desirability of the stimulus. Therefore a reasonable alternative hypothesis is that PbN responses might be dominated by dynamics similar to those observed in GC. Here we examined simultaneously recorded single-neuron PbN (and GC) responses in awake rats receiving exposure to basic taste stimuli. We found that pontine taste responses were almost entirely confined to canonically identified taste-PbN (t-PbN). Taste-specificity was found, furthermore, to be time varying in a larger percentage of these t-PbN responses than in responses recorded from the tissue around PbN (including non-taste-PbN). Finally, these time-varying properties were a good match for those observed in simultaneously recorded GC neurons—taste-specificity appeared after an initial nonspecific burst of action potentials, and palatability emerged several hundred milliseconds later. These results suggest that the pontine taste relay is closely allied with the dynamic taste processing performed in forebrain.



2015 ◽  
Vol 113 (10) ◽  
pp. 3778-3786 ◽  
Author(s):  
Cheng-Shu Li ◽  
Da-Peng Lu ◽  
Young K. Cho

The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway.





2014 ◽  
Vol 306 (3) ◽  
pp. R190-R200 ◽  
Author(s):  
Samantha Dayawansa ◽  
Stacey Ruch ◽  
Ralph Norgren

Rats with bilateral excitotoxic lesions of the parabrachial nuclei (PBN) fail to acquire a conditioned taste aversion (CTA), yet they retain the ability to express a CTA learned prior to incurring the damage. Rats with bilateral electrolytic lesions of the lateral hypothalamus (LH) also have CTA learning deficits. The PBN have reciprocal neural connections with the LH. This suggests that these CTA deficits may be functionally related. Electrolytic lesions damage fibers of passage, as well as intrinsic neurons. Thus, these LH lesions might also interrupt reciprocal connections between the PBN and other ventral forebrain areas, such as the amygdala and bed nucleus of the stria terminalis. To distinguish the source of the LH-lesion deficit, we tested for CTA first after bilateral excitotoxic lesions of LH and subsequently with a second set of animals that had asymmetric excitotoxic PBN and LH lesions. The rats with bilateral excitotoxic LH lesions showed deficits when acquiring a postlesion CTA. The asymmetrical PBN-LH lesions not only slowed acquisition of a CTA but also sped up extinction. This implies that interaction between the two structures, at minimum, facilitates CTA learning and may have a role in its consolidation.



2012 ◽  
Vol 108 (5) ◽  
pp. 1288-1298 ◽  
Author(s):  
Cheng-Shu Li ◽  
Sooyoung Chung ◽  
Da-Peng Lu ◽  
Young K. Cho

The parabrachial nuclei (PbN), the second central relay for the gustatory pathway, transfers taste information to various forebrain gustatory nuclei and to the gustatory cortex. The nucleus accumbens is one of the critical neural substrates of the reward system, and the nucleus accumbens shell region (NAcSh) is associated with feeding behavior. Taste-evoked neuronal responses of PbN neurons are modulated by descending projections from the gustatory nuclei in the forebrain. In the present study, we investigated whether taste-responsive neurons in the PbN project to the NAcSh and whether pontine gustatory neurons are subject to modulatory influence from the NAcSh in urethane-anesthetized hamsters. Extracellular single-unit activity was recorded in the PbN, and taste responses were confirmed by the delivery of 32 mM sucrose, NaCl, quinine hydrochloride, and 3.2 mM citric acid to the anterior tongue. The NAcSh was then stimulated (0.5 ms, ≤100 μA) bilaterally using concentric bipolar stimulating electrodes. A total of 98 taste neurons were recorded from the PbN. Eighteen neurons were antidromically invaded from the NAcSh, mostly the ipsilateral NAcSh ( n = 16). Stimulation of the ipsilateral and contralateral NAcSh suppressed the neuronal activity of 88 and 55 neurons, respectively; 52 cells were affected bilaterally. In a subset of pontine neurons tested, electrical stimulation of the NAcSh during taste stimulation also suppressed taste-evoked neuronal firing. These results demonstrated that taste-responsive neurons in the PbN not only project to the NAcSh but also are under substantial descending inhibitory influence from the bilateral NAcSh.



2012 ◽  
Vol 302 (8) ◽  
pp. R965-R975 ◽  
Author(s):  
Takeshi Suzuki ◽  
Yoichiro Sugiyama ◽  
Bill J. Yates

The parabrachial and adjacent Kölliker-Fuse (PBN/KF) nuclei play a key role in relaying visceral afferent inputs to the hypothalamus and limbic system and are, thus, believed to participate in generating nausea and affective responses elicited by gastrointestinal (GI) signals. In addition, the PBN/KF region receives inputs from the vestibular system and likely mediates the malaise associated with motion sickness. However, previous studies have not considered whether GI and vestibular inputs converge on the same PBN/KF neurons, and if so, whether the GI signals alter the responses of the cells to body motion. The present study, conducted in decerebrate cats, tested the hypothesis that intragastric injection of copper sulfate, which elicits emesis by irritating the stomach lining, modifies the sensitivity of PBN/KF neurons to vertical plane rotations that activate vestibular receptors. Intragastric copper sulfate produced a 70% median change in the gain of responses to vertical plane rotations of PBN/KF units, whose firing rate was modified by the administration of the compound; the response gains for 16 units increased and those for 17 units decreased. The effects were often dramatic: out of 51 neurons tested, 13 responded to the rotations only after copper sulfate was injected, whereas 10 others responded only before drug delivery. These data show that a subset of PBN/KF neurons, whose activity is altered by a nauseogenic stimulus also respond to body motion and that irritation of the stomach lining can either cause an amplification or reduction in the sensitivity of the units to vestibular inputs. The findings imply that nausea and affective responses to vestibular stimuli may be modified by the presence of emetic signals from the GI system.



Sign in / Sign up

Export Citation Format

Share Document