Effects of meclofenamate on the renin response to aortic constriction in the rat

1984 ◽  
Vol 247 (3) ◽  
pp. R546-R551 ◽  
Author(s):  
D. Villarreal ◽  
J. O. Davis ◽  
R. H. Freeman ◽  
W. D. Sweet ◽  
J. R. Dietz

This study examines the role of the renal prostaglandin system in stimulus-secretion coupling for renal baroreceptor-dependent renin release in the anesthetized rat. Changes in plasma renin activity (PRA) secondary to suprarenal aortic constriction were evaluated in groups of rats with a single denervated nonfiltering kidney (DNFK) with and without pretreatment with meclofenamate. Suprarenal aortic constriction was adjusted to reduce renal perfusion pressure to either 100 or 50 mmHg. In addition, similar experiments were performed in rats with a single intact filtering kidney. Inhibition of prostaglandin synthesis with meclofenamate failed to block or attenuate the increase in PRA in response to the decrement in renal perfusion pressure after both severe and mild aortic constriction for both the DNFK and the intact-kidney groups. The adequacy of prostaglandin inhibition was demonstrated by complete blockade with meclofenamate of the marked hypotensive and hyperreninemic responses to sodium arachidonate. The results in the DNFK indicate that in the rat, renal prostaglandins do not function as obligatory mediators of the isolated renal baroreceptor mechanism for the control of renin release. Also the findings in the intact filtering kidney suggest that prostaglandins are not essential in the renin response of other intrarenal receptor mechanisms that also are stimulated by a reduction in renal perfusion pressure.

1992 ◽  
Vol 2 (9) ◽  
pp. 1371-1387 ◽  
Author(s):  
J C Romero ◽  
V Lahera ◽  
M G Salom ◽  
M L Biondi

The role of nitric oxide in renal function has been assessed with pharmacologic and physiologic interventions. Pharmacologically, the renal vasodilation and, to some extent, the natriuresis produced by endothelium-dependent vasodilators such as acetylcholine and bradykinin are mediated by nitric oxide and also by prostaglandins. However, prostaglandins and nitric oxide do not participate in the renal effects produced by endothelium-independent vasodilators such as atrial natriuretic peptide, prostaglandin I2, and nitroprusside. Physiologically, nitric oxide and prostaglandins exert a strong regulation on the effects produced by changes in renal perfusion pressure. Increments in renal perfusion pressure within the range of RBF autoregulation appear to inhibit prostaglandin synthesis while simultaneously enhancing the formation of nitric oxide. Nitric oxide modulates autoregulatory vasoconstriction and at the same time inhibits renin release. Conversely, a decrease of renal perfusion pressure to the limit of or below RBF autoregulation may inhibit the synthesis of nitric oxide but may trigger the release of prostaglandins, whose vasodilator action ameliorates the fall in RBF and stimulates renin release. Nitric oxide and prostaglandins are also largely responsible for mediating pressure-induced natriuresis. However, unlike prostaglandins, mild impairment of the synthesis of nitric oxide in systemic circulation produces a sustained decrease in sodium excretion, which renders blood pressure susceptible to be increased during high-sodium intake. This effect suggests that a deficiency in the synthesis of nitric oxide could constitute the most effective single disturbance to foster the development of a syndrome similar to that seen in salt-sensitive hypertension.


1976 ◽  
Vol 51 (s3) ◽  
pp. 85s-87s
Author(s):  
A. Stella ◽  
F. Calaresu ◽  
A. Zanchetti

1. Renin release from an intact, innervated kidney and from the contralateral denervated kidney was measured before and during a period of suprarenal aortic stenosis. 2. Aortic stenosis of 10 min duration reduced renal perfusion pressure to 50 mmHg and increased renin release from both kidneys, but the response from the innervated kidney was greater. 3. A study of the time-course of the response during 30 min of aortic stenosis showed that the difference in rate of renin release between the innervated and the denervated kidney is greatest during the first few minutes of aortic stenosis.


1981 ◽  
Vol 241 (2) ◽  
pp. F156-F161 ◽  
Author(s):  
H. Holdaas ◽  
G. F. DiBona ◽  
F. Kiil

The mechanism whereby renal nerves influence the renin-release response to aortic constriction was examined in a nonfiltering ureter-occluded kidney preparation in anesthetized dogs. The kidney was rendered nonfiltering by a combination of mannitol infusion and ureteral occlusion. Suprarenal aortic constriction reduced renal perfusion pressure to 61 +/- 7 mmHg and increased renin release from 16.7 +/- 4.1 to 26.1 +/- 6.0 U/min. At normal renal perfusion pressure, low-frequency renal nerve stimulation (0.25 Hz) increased renin release by 11.6 +/- 4.2 to 25.1 +/- 7.6 U/min. The effect of combined low-level renal nerve stimulation and aortic constriction on renin release was additive; renin release increased by 24.6 +/- 6.5 to 39.5 +/- 7.3 U/min. Propranolol or metoprolol, administered intrarenally at 2 microgram . min-1 . kg-1, abolished the renin-release response to low-level renal nerve stimulation at normal renal perfusion pressure. These data provide evidence that low-frequency renal nerve stimulation influences the renin-release response to reduction in renal perfusion pressure in a nonfiltering ureter-occluded kidney with an inoperative macula densa receptor mechanism. The neural effect on renin release at normal renal perfusion pressure is mediated via beta 1-adrenoceptors probably located on the juxtaglomerular granular cells.


1981 ◽  
Vol 59 (7) ◽  
pp. 1220-1226 ◽  
Author(s):  
J. R. Bailey ◽  
D. J. Randall

In the trout, Salmo gairdneri, a significant correlation between the amount of blood loss and plasma renin activity was established. This increase in plasma renin activity could be due to stimulation of an intrarenal receptor, thus an isolated nonfiltering perfused kidney preparation was developed to test this hypothesis. It was found that a decrease in renal perfusion pressure resulted in an increase in renin release (as measured by perfusate renin activity) but an increase in renal perfusion pressure had no effect on renin release. The increase in renin secretion in response to a decreased renal perfusion pressure was not affected by sympathetic nervous system blocking agents, whereas angiotensin II will apparently inhibit renin secretion in vitro. It was concluded that a baroreceptor response, similar to that found in mammals, is found in fishes and a model mechanism for renin secretion in fishes is proposed.


1995 ◽  
Vol 268 (2) ◽  
pp. F296-F301
Author(s):  
E. W. Quillen ◽  
I. A. Reid

Studies were performed to determine whether intravertebral angiotensin II infusion (iva ANG II) decreases renin release by increasing renal perfusion pressure (RPP) and to investigate possible effects of iva ANG II on renal function. RPP was electronically servocontrolled in 12 conscious dogs equipped with chronic vascular catheters and a suprarenal aortic balloon constrictor while iva ANG II was infused bilaterally for 60 min at 0.33 ng.kg-1.min-1. Without servocontrol, iva ANG II increased mean arterial pressure (MAP) from 101 +/- 4 to 106 +/- 5 mmHg, urine flow (V) from 0.36 +/- 0.03 to 0.45 +/- 0.04 ml/min, and sodium excretion (UNaV) from 36.2 +/- 7.0 to 62.7 +/- 6.6 mumol/min. Plasma renin activity (PRA) decreased from 6.9 +/- 0.7 to 5.0 +/- 0.6 ng ANG I.ml-1.3 h-1. With servocontrol, iva ANG II increased MAP from 102 +/- 4 to 109 +/- 5 mmHg while RPP remained constant with a variation of less than +/- 1 mmHg. PRA did not change significantly (5.9 +/- 0.3 to 7.0 +/- 0.7 ng ANG I.ml-1.3 h-1). V decreased from 0.33 +/- 0.02 to 0.26 +/- 0.01 ml/min, and UNaV decreased from 49.0 +/- 5.7 to 29.7 +/- 4.4 mumol/min. The data provide evidence that iva ANG II decreases renin release by increasing RPP and stimulating the renal baroreceptor and/or the macula densa mechanisms. In addition, at constant RPP, ANG II exerts a central action to decrease UNaV.


1994 ◽  
Vol 266 (6) ◽  
pp. R1723-R1729 ◽  
Author(s):  
R. A. Johnson ◽  
R. H. Freeman

The influence of renal perfusion pressure on renin release was examined in rats administered the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Compared with the control plasma renin of 6.0 +/- 0.7 ng angiotensin I (ANG I).ml-1.h-1, plasma renin activity was suppressed (1.8 +/- 0.2 ng ANG I.ml-1.h-1, P < 0.05) in L-NAME-treated animals in which the renal perfusion pressure was permitted to increase and reached 141 +/- 8 mmHg. Plasma renin activity also was suppressed (2.5 +/- 0.4 ng ANG I.ml-1.h-1, P < 0.05) in a second L-NAME-treated group in which the renal perfusion pressure was controlled to a level of 105 +/- 5 mmHg via tightening of a suprarenal aortic snare. Plasma renin activity was increased (12.0 +/- 1.4 ng ANG I.ml-1.h-1, P < 0.05) in a third L-NAME-treated group in which renal perfusion pressure was reduced to 59 +/- 1 mmHg. Overall, these findings suggest that the intrarenal pressure-sensing mechanism for renin release does not stringently require nitric oxide synthesis. In a second experimental series, bilaterally renal-denervated rats were administered L-NAME, and again plasma renin activity was suppressed significantly whether renal perfusion pressure was permitted to increase or was controlled. Thus L-NAME also suppressed plasma renin activity independently of reflex reductions in renal neuroadrenergic activity even when renal perfusion pressure was controlled. Infusions of sodium nitroprusside completely inhibited L-NAME-induced suppression of plasma renin activity in these renal-denervated rats. Nitric oxide may function as a paracrine stimulatory mechanism for the local regulation of renin release.


1994 ◽  
Vol 72 (7) ◽  
pp. 782-787 ◽  
Author(s):  
L. Fan ◽  
S. Mukaddam-Daher ◽  
J. Gutkowska ◽  
B. S. Nuwayhid ◽  
E. W. Quillen Jr.

To further investigate the influence of renal nerves on renin secretion, the renin secretion responses to step reductions of renal perfusion pressure (RPP) were studied in conscious sheep with innervated kidneys (n = 5) and with bilaterally denervated kidneys (n = 5). The average basal level of RPP in sheep with denervated kidneys (82 ± 4 mmHg; 1 mmHg = 133.3 Pa) was similar to that in sheep with innervated kidneys (83 ± 3 mmHg). RPP was reduced in four sequential 15-min steps, to a final level of 54 ± 2 mmHg in sheep with innervated kidneys and to 57 ± 1 mmHg in denervated sheep. The renin secretion rate was increased as RPP was reduced in sheep with innervated kidneys. Baseline peripheral plasma renin activity was reduced and there was almost no response of renin secretion rate to reduction of RPP in sheep with denervated kidneys. Also, baseline renal blood flow, urine flow rate, sodium excretion rate, and potassium excretion rate were higher in sheep with denervated kidneys than those with innervated kidneys. Baseline plasma angiotensin II was similar in both groups of sheep. As RPP was decreased, plasma angiotensin II was increased in sheep with innervated kidneys, but was not significantly altered in sheep with denervated kidneys. Plasma atrial natriuretic factor was unaltered by either reduction of RPP or renal denervation. In conclusion, hormonal factors, such as angiotensin II and atrial natriuretic factor, do not account for the dramatic suppression of renin secretion in response to the reduction of RPP in sheep with bilateral renal denervation. Renal nerves are a necessary component in the control of renin secretion during reduction of RPP and may contribute to the regulation of baseline plasma renin activity and sodium excretion rate in conscious ewes.Key words: renin secretion, renal perfusion pressure, renal nerves, denervation, sheep.


1992 ◽  
Vol 262 (3) ◽  
pp. R524-R529 ◽  
Author(s):  
N. D. Binder ◽  
D. F. Anderson

We examined the relationship between acute reductions in renal perfusion pressure, as approximated by femoral arterial blood pressure, and plasma renin activity in the uninephrectomized fetal lamb. Renal perfusion pressure was reduced and maintained at a constant value by controlled partial occlusion of the aorta above the renal artery. After 15 min of reduced blood pressure, blood samples were taken for determination of plasma renin activity. This protocol was performed 22 times in 11 fetal lambs. Additionally, three of the fetuses were delivered by cesarean section and studied as newborns for the first week of life. In the fetus, there was a linear relationship between log plasma renin activity and femoral arterial blood pressure (P less than 0.01). After birth, the relationship still existed, although it was shifted to the right (P less than 0.0001). We conclude that there is a significant relationship between plasma renin activity and renal perfusion pressure in the fetal lamb, and as early as 1 day after birth, this relationship shifts to the right in the newborn lamb.


1979 ◽  
Vol 236 (6) ◽  
pp. H854-H859 ◽  
Author(s):  
M. D. Johnson ◽  
E. R. Fahri ◽  
B. R. Troen ◽  
A. C. Barger

Previous work from our laboratory has shown that physiological increments of circulating epinephrine concentration increase plasma renin activity (PRA) by an extrarenal beta-receptor mechanism. In the present experiments, epinephrine was infused intravenously at 125 ng.kg-1.min-1 for 45 min in trained, conscious dogs. PRA rose 3 to 5-fold, as previously described, and was accompanied by a transient decline of mean arterial pressure, decreased plasma potassium concentration, and increased hematocrit. Prior splenectomy to maintain hematocrit constant did not attenuate the PRA response to epinephrine. The kidneys of 4 dogs were denervated and constrictor cuff was placed around the renal artery. Renal denervation did not alter the PRA response to intravenous epinephrine infusion. A transient decline in renal perfusion pressure produced by cuff constriction only transiently increase PRA. Neither maintenance of a constant plasma potassium concentration nor oral administration of indomethacin altered the PRA response to epinephrine. We conclude that intravenous epinephrine increases PRA by a mechanism independent of the renal nerves, changes in renal perfusion pressure, hematocrit, plasma potassium concentration, and plasma prostaglandins.


1994 ◽  
Vol 266 (2) ◽  
pp. H650-H657 ◽  
Author(s):  
H. W. Reinhardt ◽  
M. Corea ◽  
W. Boemke ◽  
R. Pettker ◽  
L. Rothermund ◽  
...  

This study examines whether an increase in renal perfusion pressure (RPP) is necessary to escape endogenously stimulated Na- and water-retaining mechanisms. In seven dogs stimulation was accomplished by a servo-controlled reduction of RPP (rRPP) below the threshold for pressure-dependent renin release for 4 days. Oral intake was standardized. Plasma renin activity (PRA) rose from 2.5 in controls to approximately 5 ng ANG I.ml-1 x h-1 during rRPP days. Plasma aldosterone concentration (PAC) increased by approximately 50% only on day 1 of rRPP but fell at or below control levels thereafter. The PAC-to-PRA ratio decreased during rRPP days. Atrial natriuretic factor (ANF) rose to values three times higher than in controls. Mean systemic blood pressure (MABP) rose from 111 +/- 12 in controls to 142 +/- 14 mmHg on day 4 of rRPP. On day 1 of rRPP 60% of the Na and 24% of the water intake were retained. However, after 2–3 days the input-output balance was restored but on a higher level of total body Na and total body water (new “set point”). Because elevated systemic MABP could not exert direct pressure effects on the kidneys due to servo control of rRPP, there must be other factors, e.g., fall in PAC, increase in ANF, and changes in intrarenal hemodynamics and physical factors that may have contributed to the resetting of input-output balances during rRPP.


Sign in / Sign up

Export Citation Format

Share Document