Sympathetic alterations after midline medullary raphe lesions

1987 ◽  
Vol 253 (1) ◽  
pp. R91-R100 ◽  
Author(s):  
R. B. McCall ◽  
L. T. Harris

The present study was designed to determine the functional importance of the midline medullary raphe nuclei in the autonomic regulation of the cardiovascular system in the anesthetized cat. Baroreceptor and somatosympathetic reflexes as well as the effects of electrical stimulation of vagal afferents and pressor and depressor sites in the hypothalamus and spinal trigeminal tract were determined before and after midline medullary lesions that extended from 2 to 7 mm rostral to the obex. Midline medullary lesions failed to affect baroreceptor reflexes as judged by the lack of effect on the sympathoinhibition associated with the pressor response to phenylephrine and the degree of slow-wave locking of sympathetic activity to the cardiac cycle. However, the lesion did significantly increase spontaneous sympathetic activity recorded from the inferior cardiac nerve. Blood pressure and heart rate were not altered by midline lesions. In addition, the computer-summed sympathoexcitatory response to electrical stimulation of somatic afferents in the sciatic nerve and the sympathoinhibitory response to stimulation of vagal afferent fibers were not affected by midline lesions. In contrast, the decrease in blood pressure and inhibition of sympathetic nerve activity elicited by electrical stimulation of the spinal trigeminal tract were completely abolished by the lesion. Depressor responses evoked from the anteroventral third ventricle region of the hypothalamus but not pressor responses elicited from the posterior hypothalamus were eliminated following midline medullary lesions. Finally, the sympathoinhibitory actions of the serotonin antagonist methysergide were blocked by medullary raphe lesions. These data indicate that neural elements in the medial medullary area function to provide a tonic inhibition of sympathetic nerve activity that is of nonbaroreceptor origin. Depressor responses evoked from the anterior hypothalamus and the spinal trigeminal tract also are mediated through this area of the medulla. Finally, the data support our contention that medullary serotonergic neurons have a sympathoexcitatory function.

1989 ◽  
Vol 256 (5) ◽  
pp. R1111-R1120 ◽  
Author(s):  
M. E. Clement ◽  
R. B. McCall

The purpose of the present investigation was to determine the role of the midline medulla in mediating the trigeminal depressor response. Previously we found that lesions of the midline medulla abolished the decrease in blood pressure resulting from electrical stimulation of the spinal trigeminal complex. Electrical stimulation (5 Hz) of the spinal trigeminal tract elicited a decrease in arterial blood pressure that was associated with an inhibition of sympathetic nerve activity recorded from the inferior cardiac nerve of anesthetized cats. The effect of single shocks applied to the trigeminal complex on sympathetic activity was determined using computer-averaging techniques. Single shock stimulation consistently elicited an excitation of sympathetic activity that was followed by an inhibition of sympathetic nerve discharge. The gamma-aminobutyric acid antagonist picrotoxin blocked the depressor response elicited by electrical stimulation of the midline medulla but not by stimulation of the spinal trigeminal complex. Extracellular recordings of the discharges of midline medullary neurons were made to determine the effects of trigeminal stimulation on sympathoinhibitory, sympathoexcitatory, and serotonin neurons. Sympathoinhibitory and sympathoexcitatory neurons were identified by the relationship between unitary discharges and sympathetic nerve activity and by their response to baroreceptor reflex activation. Serotonin (5-HT) neurons were identified using criteria previously developed in our laboratory. These included 1) a slow regular discharge rate, 2) sensitivity to the inhibitory action of the 5-HT1A agonist 8-OH 8-hydroxy-2-(di-n-propylamino)tetralin, 3) failure to respond to baroreceptor reflex activation, and 4) the discharges of the 5-HT neurons were not related to sympathetic activity. Stimulation of the spinal trigeminal complex typically inhibited the discharges of sympathoinhibitory neurons. In contrast, stimulation of the trigeminal complex consistently excited both sympathoexcitatory and 5-HT neurons. These results are discussed in relationship to the role of the midline medulla in mediating the trigeminal depressor response.


2013 ◽  
Vol 304 (11) ◽  
pp. R959-R965 ◽  
Author(s):  
Can Ozan Tan ◽  
Yu-Chieh Tzeng ◽  
Jason W. Hamner ◽  
Renaud Tamisier ◽  
J. Andrew Taylor

Resting vascular sympathetic outflow is significantly increased during and beyond exposure to acute hypoxia without a parallel increase in either resistance or pressure. This uncoupling may indicate a reduction in the ability of sympathetic outflow to effect vascular responses (sympathetic transduction). However, the effect of hypoxia on sympathetic transduction has not been explored. We hypothesized that transduction would either remain unchanged or be reduced by isocapnic hypoxia. In 11 young healthy individuals, we measured beat-by-beat pressure, multiunit sympathetic nerve activity, and popliteal blood flow velocity at rest and during isometric handgrip exercise to fatigue, before and during isocapnic hypoxia (∼80% SpO2), and derived sympathetic transduction for each subject via a transfer function that reflects Poiseuille's law of flow. During hypoxia, heart rate and sympathetic nerve activity increased, whereas pressure and flow remained unchanged. Both normoxic and hypoxic exercise elicited significant increases in heart rate, pressure, and sympathetic activity, although sympathetic responses to hypoxic exercise were blunted. Hypoxia slightly increased the gain relation between pressure and flow (0.062 ± 0.006 vs. 0.074 ± 0.004 cm·s−1·mmHg−1; P = 0.04), but markedly increased sympathetic transduction (−0.024 ± 0.005 vs. −0.042 ± 0.007 cm·s−1·spike−1; P < 0.01). The pressor response to isometric handgrip was similar during normoxic and hypoxic exercise due to the balance of interactions among the tachycardia, sympathoexcitation, and transduction. This indicates that the ability of sympathetic activity to affect vasoconstriction is enhanced during brief exposure to isocapnic hypoxia, and this appears to offset the potent vasodilatory stimulus of hypoxia.


2005 ◽  
Vol 98 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Renaud Tamisier ◽  
Amit Anand ◽  
Luz M. Nieto ◽  
David Cunnington ◽  
J. Woodrow Weiss

Sustained and episodic hypoxic exposures lead, by two different mechanisms, to an increase in ventilation after the exposure is terminated. Our aim was to investigate whether the pattern of hypoxia, cyclic or sustained, influences sympathetic activity and hemodynamics in the postexposure period. We measured sympathetic activity (peroneal microneurography), hemodynamics [plethysmographic forearm blood flow (FBF), arterial pressure, heart rate], and peripheral chemosensitivity in normal volunteers on two occasions during and after 2 h of either exposure. By design, mean arterial oxygen saturation was lower during sustained relative to cyclic hypoxia. Baseline to recovery muscle sympathetic nerve activity and blood pressure went from 15.7 ± 1.2 to 22.6 ± 1.9 bursts/min ( P < 0.01) and from 85.6 ± 3.2 to 96.1 ± 3.3 mmHg ( P < 0.05) after sustained hypoxia, respectively, but did not exhibit significant change from 13.6 ± 1.5 to 17.3 ± 2.5 bursts/min and 84.9 ± 2.8 to 89.8 ± 2.5 mmHg after cyclic hypoxia. A significant increase in FBF occurred after sustained, but not cyclic, hypoxia, from 2.3 ± 0.2 to 3.29 ± 0.4 and from 2.2 ± 0.1 to 3.1 ± 0.5 ml·min−1·100 g of tissue−1, respectively. Neither exposure altered the ventilatory response to progressive isocapnic hypoxia. Two hours of sustained hypoxia increased not only muscle sympathetic nerve activity but also arterial blood pressure. In contrast, cyclic hypoxia produced slight but not significant changes in hemodynamics and sympathetic activity. These findings suggest the cardiovascular response to acute hypoxia may depend on the intensity, rather than the pattern, of the hypoxic exposure.


2017 ◽  
Vol 313 (4) ◽  
pp. R463-R472 ◽  
Author(s):  
Korynne S. Rollins ◽  
Joshua R. Smith ◽  
Peter J. Esau ◽  
Evan A. Kempf ◽  
Tyler D. Hopkins ◽  
...  

Hindlimb skeletal muscle stretch (i.e., selective activation of the muscle mechanoreflex) in decerebrate rats evokes reflex increases in blood pressure and sympathetic nerve activity. Bradykinin has been found to sensitize mechanogated channels through a bradykinin B2 receptor-dependent mechanism. Moreover, bradykinin B2 receptor expression on sensory neurons is increased following chronic femoral artery ligation in the rat (a model of simulated peripheral artery disease). We tested the hypothesis that injection of bradykinin into the arterial supply of a hindlimb in decerebrate, unanesthetized rats would acutely augment (i.e., sensitize) the increase in blood pressure and renal sympathetic nerve activity during hindlimb muscle stretch to a greater extent in rats with a ligated femoral artery than in rats with a freely perfused femoral artery. The pressor response during static hindlimb muscle stretch was compared before and after hindlimb arterial injection of 0.5 µg of bradykinin. Injection of bradykinin increased blood pressure to a greater extent in “ligated” ( n = 10) than “freely perfused” ( n = 10) rats. The increase in blood pressure during hindlimb muscle stretch, however, was not different before vs. after bradykinin injection in freely perfused (14 ± 2 and 15 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.62) or ligated (15 ± 3 and 14 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.80) rats. Likewise, the increase in renal sympathetic nerve activity during stretch was not different before vs. after bradykinin injection in either group of rats. We conclude that bradykinin did not acutely sensitize the pressor response during hindlimb skeletal muscle stretch in freely perfused or ligated decerebrate rats.


1996 ◽  
Vol 80 (3) ◽  
pp. 869-875 ◽  
Author(s):  
Y. Sugiyama ◽  
T. Matsukawa ◽  
A. S. Shamsuzzaman ◽  
H. Okada ◽  
T. Watanabe ◽  
...  

We studied the effects of aging on alpha-receptor-mediated vasoconstrictive responses to sympathetic nerve activity in 16 healthy aged [75.8 +/- 2.7 (SE) yr] and young men (33.8 +/- 2.0 yr). Muscle sympathetic nerve activity (MSNA), heart rate, and blood pressure were analyzed during slow respiration (0.1 Hz). Peak amplitude and phase were calculated from a cosine function fitted with 0.1 Hz by using the least squares method. The latency of the pressor response to MSNA, defined as lag time from the peak of MSNA to diastolic blood pressure, was significantly longer in the aged than the young group (7.1 +/- 0.3 vs. 5.4 +/- 0.4 s; P < 0.01). The extent of pressor response to MSNA, defined as diastolic blood pressure rise in response to increase in total MSNA, was significantly lower in the aged than the young group (0.038 +/- 0.006 vs. 0.099 +/- 0.024 mmHg/unit, P < 0.001). These results suggest that alpha-receptor-mediated vasoconstrictive responses to MSNA may be attenuated in the elderly.


2020 ◽  
Vol 129 (5) ◽  
pp. 1203-1213
Author(s):  
Gabrielle A. Dillon ◽  
Zachary S. Lichter ◽  
Lacy M. Alexander ◽  
Lauro C. Vianna ◽  
Jing Wang ◽  
...  

The magnitude of the increases in blood pressure and muscle sympathetic nerve activity in response to sympathoexcitatory stimuli such as static handgrip, postexercise ischemia, and the cold pressor test are commonly used to assess neurocardiovascular responsiveness. However, limited studies have comprehensively examined the reproducibility of these responses. We demonstrate that the reproducibility of the pressor response to these perturbations was very good within an individual, whereas the reproducibility of the MSNA response was less consistent.


2004 ◽  
Vol 286 (5) ◽  
pp. H1706-H1711 ◽  
Author(s):  
Lie Gao ◽  
Zhen Zhu ◽  
Irving H. Zucker ◽  
Wei Wang

It is well known that cardiac sympathetic afferent reflexes contribute to increases in sympathetic outflow and that sympathetic activity can antagonize arterial baroreflex function. In this study, we tested the hypothesis that in normal rats, chemical and electrical stimulation of cardiac sympathetic afferents results in a decrease in the arterial baroreflex function by increasing sympathetic nerve activity. Under α-chloralose (40 mg/kg) and urethane (800 mg/kg ip) anesthesia, renal sympathetic nerve activity, mean arterial pressure, and heart rate were recorded. The arterial baroreceptor reflex was evaluated by infusion of nitroglycerin (25 μg iv) and phenylephrine (10 μg iv). Left ventricular epicardial application of capsaicin (0.4 μg in 2 μl) blunted arterial baroreflex function by 46% (maximum slope 3.5 ± 0.3 to 1.9 ± 0.2%/mmHg, P < 0.01). When the central end of the left cardiac sympathetic nerve was electrically stimulated (7 V, 1 ms, 20 Hz), the sensitivity of the arterial baroreflex was similarly decreased by 42% (maximum slope 3.2 ± 0.3 to 1.9 ± 0.4%/mmHg; P < 0.05). Pretreatment with intracerebroventricular injection of losartan (500 nmol in 1 μl of artificial cerebrospinal fluid) completely prevented the impairment of arterial baroreflex function induced by electrical stimulation of the central end of the left cardiac sympathetic nerve (maximum slope 3.6 ± 0.4 to 3.1 ± 0.5%/mmHg). These results suggest that the both chemical and electrical stimulation of the cardiac sympathetic afferents reduces arterial baroreflex sensitivity and the impairment of arterial baroreflex function induced by cardiac sympathetic afferent stimulation is mediated by central angiotensin type 1 receptors.


Sign in / Sign up

Export Citation Format

Share Document