Electrophysiological and cable parameters of perfused beetle malpighian tubules

1989 ◽  
Vol 257 (5) ◽  
pp. R1190-R1198
Author(s):  
L. C. Isaacson ◽  
S. W. Nicolson ◽  
D. W. Fisher

Isolated perfused Malpighian tubules of the desert beetle Onymacris plana (Coleoptera: Tenebrionidae) have been subjected to cable analysis under the following conditions: control, adenosine 3',5'-cyclic monophosphate (cAMP), corpora cardiaca homogenate (CCH), and high ambient K (130 mM). In addition, we investigated possible effects of perfusate composition on proximal transtubular potential (Vo) by reducing K, Na, or Cl or by adding ouabain, furosemide, or dinitrophenol. The effects of cAMP, CCH, and high K on Vo and cable parameters were consistent with increased fluid secretion, i.e., diminished input and core resistances and increased virtual short-circuit current, length constant, and luminal diameter. They differed in that CCH had variable effects on Vo and high K did not reduce transepithelial resistance. In terms of their effects on the parameters of a simple equivalent electrical circuit, the responses to cAMP, CCH, and a high ambient K concentration appear to be mediated by different mechanisms. Alterations in perfusate composition were almost without effect.

1985 ◽  
Vol 116 (1) ◽  
pp. 153-167
Author(s):  
J. W. HANRAHAN ◽  
J. E. PHILLIPS

1. Electrophysiological and tracer flux techniques were used to studyregulation of KC1 reabsorption across locust recta. Physiologically high K+levels (100 mmolI−1) on the lumen side stimulated net 36Cl flux and reduced the theoretical energy cost of anion transport under open-circuit conductions. 2. The stimulation of short-circuit current (Ibc i.e. active C− absorption) by crude corpora cardiaca extracts (CC) was not dependent on exogenous Ca2+. Stimulations of Ibc were greatly enhanced in the presence of theophylline, indicating that the rate of synthesis of cAMP is increased by CC extracts. High CC levels lowered transepithelial resistance (Rt), suggesting that chloride transport stimulating hormone (CTSH) regulates both active Cl− absorption and counter-ion (K+) permeability. 3. High mucosal osmolarity or K+ concentration decreased Ibc and caused a disproportionately large increase in Rt, consistent with a decrease in theshunt (K+) conductance. Measurements of relative mucosal-to-serosal membrane resistance confirmed that high mucosal K+ levels reduced apical membrane conductance. Lowering mucosal pH to values observed in vivo atthe end of resorptive cycles also inhibited Ibc, apparently without affecting K+ permeability.


1993 ◽  
Vol 265 (2) ◽  
pp. F174-F179
Author(s):  
O. F. Kohn ◽  
P. P. Mitchell ◽  
P. R. Steinmetz

To explore the possible contribution of an H-K-adenosine-triphosphatase (H-K-ATPase) to H+ secretion (JH) in the isolated turtle bladder, we measured electrogenic JH (JeH) as short-circuit current and total JH (JTH) by pH stat titration in the presence of ouabain at different ambient K+ concentration ([K+]) and during luminal addition of a known gastric H-K-ATPase inhibitor, Schering (Sch)-28080. JH was not reduced by decreasing ambient [K+] to undetectable or very low levels (< 0.05 mM by atomic absorption) and luminal BaCl2 addition to further reduce local [K+] at the apical membrane. These K(+)-removal studies indicate that H+ transport is not coupled to countertransport of K+. JTH did not exceed JeH at any point: in K(+)-free solutions JTH was 0.73 +/- 0.05, and JeH was 0.95 +/- 0.08 mumol/h; in standard (3.5 mM) K+ solutions JTH was 0.72 +/- 0.05 and JeH 0.98 +/- 0.06 mumol/h; in high (118 mM) K+ solutions JTH was 0.65 +/- 0.07 and JeH 0.94 +/- 0.08 mumol/h. Sch-28080 caused a rapid inhibition of JH, with similar half-maximal inhibitory concentrations (IC50) in K(+)-free, standard [K+], and high [K+] solutions. Bafilomycin inhibited JeH and JTH with an IC50 of approximately 100 nM. The observed non-potassium-competitive inhibition of JH by Sch-28080 and the bafilomycin sensitivity distinguish the H-ATPase of the turtle bladder from the gastric H-K-ATPase. The rapidity of the inhibition by Sch-28080 suggests that it acts at an accessible luminal site of the ATPase.


2000 ◽  
Vol 203 (9) ◽  
pp. 1459-1468 ◽  
Author(s):  
K.W. Beyenbach ◽  
T.L. Pannabecker ◽  
W. Nagel

The effects of bafilomycin A(1), a blocker of V-type H(+)-ATPases, were investigated in Malpighian tubules of Aedes aegypti. Bafilomycin A(1) reduced rates of transepithelial fluid secretion and the virtual short-circuit current (vI(sc)) with an IC(50) of approximately 5 micromol l(−)(1). As vI(sc) decreased, the electrical resistance increased across the whole epithelium and across the apical membrane, indicating effects on electroconductive pathways. Bafilomycin A(1) had no effect when applied from the tubule lumen, pointing to the relative impermeability of the apical membrane to bafilomycin A(1). Thus, bafilomycin A(1) must take a cytoplasmic route to its blocking site in the proton channel of the H(+)-ATPase located in the apical membrane of principal cells. The inhibitory effects of bafilomycin A(1) were qualitatively similar to those of dinitrophenol in that voltages across the epithelium (V(t)), the basolateral membrane (V(bl)) and the apical membrane (V(a)) depolarized towards zero in parallel. Moreover, V(bl)always tracked V(a), indicating electrical coupling between the two membranes through the shunt. Electrical coupling allows the H(+)-ATPase to energize not only the apical membrane, but also the basolateral membrane. Furthermore, electrical coupling offers a balance between electroconductive entry of cations across the basolateral membrane and extrusion across the apical membrane to support steady-state conditions during transepithelial transport.


1994 ◽  
Vol 195 (1) ◽  
pp. 123-145 ◽  
Author(s):  
A Leyssens ◽  
S Dijkstra ◽  
E Van Kerkhove ◽  
P Steels

In the presence of 6 mmol l-1 Ba2+, known to block the K+ channels in the basal membrane, a rise in bath [K+] ([K+]bl) induced an increase in intracellular K+ concentration ([K+]i) similar in amount and in time course to that obtained in the absence of Ba2+. The presence of active and passive (other than through K+ channels) K+ uptake mechanisms across the basal membrane was investigated in different bath K+ concentrations. Dihydro-ouabain (10(-3) mol l-1), a blocker of the Na+/K(+)-ATPase, tested in low bath [K+], and Sch28080 (10(-4) mol l-1), a K+/H(+)-ATPase inhibitor, were without effect on fluid secretion. Dihydro-ouabain was also without effect on electrical potential differences either in the absence or in the presence of Ba2+. Vanadate (10(-3) mol l-1), in contrast, strongly reduced fluid secretion not only in control solution but also in high-K+, Na(+)-free medium and reduced the transepithelial and the apical membrane potential differences but not the basal membrane potential difference of [K+]i. Omitting Na+ from the bathing medium, replacing Cl- by Br- or applying bumetanide (10(-5) mol l-1) inhibited fluid secretion only in a low-K+ (10 mmol l-1) medium. In 51 mmol l-1 [K+]bl, omitting Na+ was without effect and 10(-4) mol l-1 bumetanide was needed to inhibit secretion. Replacing Cl- by Br- stimulated fluid secretion at this K+ concentration. Bumetanide (10(-4) mol l-1) had no effect in 113 mmol l-1 [K+]bl. Bumetanide (10(-4) mol l-1) in 51 mmol l-1 [K+]bl did not affect membrane potentials, did not lower [K+]i and did not affect the rise in [K+]i observed on an increase in [K+]bl. The results were summarized in a model proposing that K+ channels play a dominant role in high-K+ (113 mmol l-1) bathing medium. A K+/Cl- cotransporter may become more important in 51 mmol l-1 [K+]bl and a K+/Na+/2Cl- cotransporter may gain in importance in 10 mmol l-1 [K+]bl. Active mechanisms for K+ uptake across the basal membrane seem to play no detectable role in sustaining fluid secretion. The response to vanadate might be due to an effect on the apical electrogenic H+ pump.


2001 ◽  
Vol 281 (2) ◽  
pp. C633-C648 ◽  
Author(s):  
Sasha Blaug ◽  
Kevin Hybiske ◽  
Jonathan Cohn ◽  
Gary L. Firestone ◽  
Terry E. Machen ◽  
...  

Mammary epithelial 31EG4 cells (MEC) were grown as monolayers on filters to analyze the apical membrane mechanisms that help mediate ion and fluid transport across the epithelium. RT-PCR showed the presence of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC) message, and immunomicroscopy showed apical membrane staining for both proteins. CFTR was also localized to the apical membrane of native human mammary duct epithelium. In control conditions, mean values of transepithelial potential (apical-side negative) and resistance ( R T) are −5.9 mV and 829 Ω · cm2, respectively. The apical membrane potential ( V A) is −40.7 mV, and the mean ratio of apical to basolateral membrane resistance ( R A/ R B) is 2.8. Apical amiloride hyperpolarized V A by 19.7 mV and tripled R A/ R B. A cAMP-elevating cocktail depolarized V A by 17.6 mV, decreased R A/ R B by 60%, increased short-circuit current by 6 μA/cm2, decreased R T by 155 Ω · cm2, and largely eliminated responses to amiloride. Whole cell patch-clamp measurements demonstrated amiloride-inhibited Na+ currents [linear current-voltage ( I-V) relation] and forskolin-stimulated Cl−currents (linear I-V relation). A capacitance probe method showed that in the control state, MEC monolayers either absorbed or secreted fluid (2–4 μl · cm−2 · h−1). Fluid secretion was stimulated either by activating CFTR (cAMP) or blocking ENaC (amiloride). These data plus equivalent circuit analysis showed that 1) fluid absorption across MEC is mediated by Na+ transport via apical membrane ENaC, and fluid secretion is mediated, in part, by Cl− transport via apical CFTR; 2) in both cases, appropriate counterions move through tight junctions to maintain electroneutrality; and 3) interactions among CFTR, ENaC, and tight junctions allow MEC to either absorb or secrete fluid and, in situ, may help control luminal [Na+] and [Cl−].


1983 ◽  
Vol 244 (6) ◽  
pp. F639-F645 ◽  
Author(s):  
M. J. Welsh

Addition of barium ion, Ba2+, to the submucosal bathing solution of canine tracheal epithelium reversibly decreased the short-circuit current and increased transepithelial resistance. The decrease in short-circuit current represented a decrease in the net rate of Cl secretion with no change in the rate of Na absorption. Intracellular microelectrode techniques and an equivalent electrical circuit analysis were used to localize the effect of Ba2+ to an inhibition of the permeability of the basolateral membrane to K. Ba2+ (2 mM) doubled basolateral membrane resistance, decreased the equivalent electromotive force at the basolateral membrane, and decreased the magnitude of the depolarization of basolateral membrane voltage produced by increasing the submucosal K concentration. The inhibition of the basolateral K permeability depolarized the negative intracellular voltage, resulting in both a decrease in the driving force for Cl exit and an estimated increase in intracellular Cl concentration. These studies indicate that there is a Ba2+-inhibitable K conductance at the basolateral membrane of tracheal epithelial cells and that the K permeability plays an important role in the generation of the negative intracellular electrical potential that provides the driving force for Cl exit from the cell.


1993 ◽  
Vol 265 (1) ◽  
pp. G28-G34 ◽  
Author(s):  
W. E. Khalbuss ◽  
R. Alkiek ◽  
C. G. Marousis ◽  
R. C. Orlando

K+ conductance in apical and basolateral cell membranes of rabbit esophageal epithelial cells was investigated within intact epithelium by impalement with conventional microelectrodes from luminal or serosal sides. Under steady-state conditions, K+ conductance was demonstrated in basolateral, but not apical, membranes by showing 1) membrane depolarization upon exposure to either solutions high in K+ (20-65 mM) or containing Ba2+, tetraethylammonium, or quinine, and 2) a resistance ratio that increased on exposure to high K+ solution and decreased on exposure to Ba2+, quinine, and tetraethylammonium. From exposures to high K+, the apparent K+ transference number and electromotive force generated at the basolateral membrane were calculated and found to be 0.42 +/- 0.01 and -83 +/- 3 mV, respectively. Furthermore, basolateral K+ conductance was shown to be important for maintaining resting net transepithelial Na+ absorption in that high K+ or barium inhibited the transepithelial potential difference and short-circuit current of Ussing-chambered epithelia. We conclude that under steady-state conditions the basolateral, but not apical, membranes of esophageal epithelial cells contain a K(+)-conductive pathway and that this pathway is important for active sodium absorption.


2002 ◽  
Vol 283 (6) ◽  
pp. F1337-F1350 ◽  
Author(s):  
Darren P. Wallace ◽  
Marcy Christensen ◽  
Gail Reif ◽  
Franck Belibi ◽  
Brantley Thrasher ◽  
...  

Inner medullary collecting ducts (IMCD) are the final nephron segments through which urine flows. To investigate epithelial ion transport in human IMCD, we established primary cell cultures from initial (hIMCDi) and terminal (hIMCDt) inner medullary regions of human kidneys. AVP, PGE2, and forskolin increased cAMP in both hIMCDi and hIMCDt cells. The effects of AVP and PGE2 were greatest in hIMCDi; however, forskolin increased cAMP to the same extent in hIMCDi and hIMCDt. Basal short-circuit current ( I SC) of hIMCDi monolayers was 1.4 ± 0.5 μA/cm2 and was inhibited by benzamil, a Na+ channel blocker. 8-Bromo-cAMP, AVP, PGE2, and forskolin increased I SC; the current was reduced by blocking PKA, apical Cl− channels, basolateral NKCC1 (a Na+-K+-2Cl−cotransporter), and basolateral Cl−/HCO[Formula: see text]exchangers. In fluid transport studies, hIMCDi monolayers absorbed fluid in the basal state and forskolin reversed net fluid transport to secretion. In hIMCDt monolayers, basal current was not different from zero and cAMP had no effect on I SC. We conclude that AVP and PGE2stimulate cAMP-dependent Cl− secretion by hIMCDi cells, but not hIMCDt cells, in vitro. We suggest that salt secretion at specialized sites along human collecting ducts may be important in the formation of the final urine.


1987 ◽  
Vol 252 (4) ◽  
pp. F645-F653 ◽  
Author(s):  
S. W. Nicolson ◽  
L. C. Isaacson

Malpighian tubules of Onymacris plana (Coleoptera: Tenebrionidae) have been isolated for measurement of transepithelial and intracellular potentials, before and during stimulation of fluid secretion. In a bathing medium resembling the hemolymph composition of the insect, the transepithelial potential (VT) was approximately 13 mV, lumen positive. VT was subject to drift and frequently showed super-imposed regular oscillations, which were apparently action potentials associated with contractions of muscle fibers running along the tubules. Although tubules of Onymacris are approximately 8 cm long, the basal membrane potential (Vb) did not vary with distance along the tubule, averaging -31 mV. Addition of adenosine 3',5'-cyclic monophosphate (cAMP) or diuretic hormone (DH) homogenate to the bathing medium had no effect on Vb, but opposing effects on VT: cAMP caused it to increase to 60 mV, whereas DH homogenate caused a rapid drop in VT to almost zero. Ion substitutions in the bathing medium showed that under control conditions beetle tubules possessed appreciable basal permeability to both K and Cl ions, with a 10-fold reduction in bath K concentration hyperpolarizing Vb by 54 mV. The basal K and Cl channels were partially blocked by barium and thiocyanate ions, respectively. Stimulation with cAMP increased the apical membrane potential (Va) and significantly reduced the Cl permeability of the basal membrane, whereas its Na permeability remained negligible.


1980 ◽  
Vol 239 (3) ◽  
pp. G151-G160 ◽  
Author(s):  
W. L. McLennan ◽  
T. E. Machen ◽  
T. Zeuthen

Gastric mucosae from frogs and newborn pigs were used for in vitro investigation of the effects of Ba2+ (10 microM to 7 mM) on transepithelial potential difference (PD), resistance and conductance (G), short-circuit current (Isc), H+ secretion, and transepithelial fluxes of 36Cl-. Ba2+ in the serosal, but not the mucosal, solution of both preparations caused PD, G, Isc, and Cl- secretion (JnetCl, Isc conditions) to decrease, while H+ secretion remained constant. Because the oxyntic cells were most likely the site of action for Ba2+, these cells must have the capacity to secrete Cl- in excess of H+ ions. The inhibitory effect of Ba2+ was not due to competition in the serosal membrane by Ba2+ for surface charges, Ca2+ sites, Na+ sites, or Cl- sites. When [K+] in both the mucosal and serosal solutions or in just the serosal solution ([K+]s) alone was increased to 10 mM, the inhibitory effects of low [Ba2+] were reduced; however, at higher [Ba2+], Isc was stimulated. At least part of the Ba2+ effect seems to be due to blockage of K+ channels in the serosal membrane of oxyntic cells. High [K+]s also caused decreased PD and Isc (but increased G) with no change in H+ secretion. It is proposed that during Isc conditions, JnetCl involves a neutral Na+-dependent accumulation of Cl- within oxyntic cells and a passive, conductive efflux fromthe cells into the mucosal solution. Ba2+ and high [K+] may alter this transport by depolarizing and, under certain conditions, hyperpolarizing intracellular voltage.


Sign in / Sign up

Export Citation Format

Share Document