Angiotensin II does not contribute to rapid reflex control of arterial pressure

1991 ◽  
Vol 261 (2) ◽  
pp. R473-R477 ◽  
Author(s):  
D. R. Brown ◽  
J. D. Yingling ◽  
D. C. Randall ◽  
H. M. Aral ◽  
J. M. Evans ◽  
...  

Pharmacological blockade of the renin-angiotensin converting enzyme reportedly alters the heart rate (HR) power spectrum in conscious dogs, suggesting that these hormones contribute to the short-term regulation of arterial blood pressure. We tested this possibility using four independent procedures. First, HR power spectrum was determined in seven awake dogs before and after administration of enalaprilat (300 ng/kg), a converting-enzyme inhibitor. There were no significant changes in the average amplitude for the spectral peak between 0.003 and 0.1 Hz (i.e., the "low-frequency peak"). Second, the HR power spectrum was measured in 11 awake rabbits before and after treatment with deoxycorticosterone acetate (1 mg.kg-1.day-1) and salt (0.9% saline ad libitum) for 7 days to depress plasma renin levels. There were no significant changes in the amplitude of the HR power spectrum, although mean HR decreased from 206 +/- 3 to 184 +/- 4 beats/min after treatment. In the third experiment, another group of rabbits (n = 8) was tested after 2 wk on a low-salt diet to elevate plasma angiotensin levels and then after 2 wk on a normal salt diet. Once again there were no significant effects on the HR power spectrum. Finally, tranquilized dogs (n = 9) were subjected to sinusoidally varying lower body negative pressure at selected frequencies of 0.008-0.12 Hz. Tests were conducted in the control state and after administration of an angiotensin receptor antagonist (saralasin, 1 microgram.kg-1.min-1). Lower body negative pressure-induced fluctuations in arterial blood pressure were similar in both states. We find no evidence for the role of the renin-angiotensin system in the moment-to-moment regulation of arterial pressure and HR.

1997 ◽  
Vol 22 (4) ◽  
pp. 351-367
Author(s):  
Tania L. Culham ◽  
Gabrielle K. Savard

Several studies indicate that carotid baroreflex responsiveness is a good predictor of orthostatic tolerance. Two groups of healthy women with high (HI) and low (LO) carotid baroreflex responsiveness were studied (a) to determine any differences in the level of orthostatic tolerance of the two groups, and (b) to study the hemodynamic strategies used by HI and LO responders to regulate arterial pressure during the orthostatic challenge of lower body negative pressure (LBNP). Orthostatic tolerance was similar between the two groups, whereas the hemodynamic strategies recruited to maintain blood pressure at −40 mmHg LBNP differed: HI responders exhibited greater LBNP-induced decreases in stroke volume and cardiac output, as well as a greater increase in peripheral resistance compared to LO responders (p < .05). In addition, a significant increase in plasma renin activity during LBNP was found in the HI responders only. No significant between-group differences were found in arterial and cardiopulmonary control of vascular resistance or arterial haroreflex control of heart rate during LBNP. Key words: arterial pressure, carotid baroreceptor, lower body negative pressure, orthostatic tolerance, stroke volume


1994 ◽  
Vol 77 (1) ◽  
pp. 69-77 ◽  
Author(s):  
R. L. Hughson ◽  
A. Maillet ◽  
C. Gharib ◽  
J. O. Fortrat ◽  
Y. Yamamoto ◽  
...  

Effects of 28 days of continuous 6 degrees head-down tilt bed rest on spontaneous vagally mediated baroreflex response slope were evaluated from beat-by-beat relationships between R-R interval and systolic arterial blood pressure. Twelve healthy men (age 27–42 yr) were assigned to either countermeasure (CM) or no-countermeasure (no-CM) groups. CM consisted of strenuous short-term exercise once per day 6 days/wk from days 7 to 28 and lower body negative pressure (LBNP) for 15 min on days 16, 18, 20, and 22–28. Spontaneous baroreflex slope was evaluated by application of linear regression to sequences of at least three beats in which systolic blood pressure and R-R interval changed in the same direction. Measurements were made pre-, mid- (day 15), and post-bed rest at rest and during progressive LBNP tests (3 min at each of -20, -30, -40, and -50 mmHg). R-R interval decreased progressively and significantly (P < 0.0001) over duration of bed rest. Spontaneous baroreflex slope at rest in pre-bed rest was 18.5 +/- 2.1 ms/mm Hg for CM and 14.9 +/- 1.6 ms/mmHg for no-CM. There was a significant reduction in baroreflex slope as a function of bed rest, and it was further reduced during LBNP (P < 0.0001). Between CM and no-CM groups differences existed, but these were present pre-bed rest and appeared unaffected by countermeasures.(ABSTRACT TRUNCATED AT 250 WORDS)


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243627
Author(s):  
Niels A. Stens ◽  
Jonny Hisdal ◽  
Espen F. Bakke ◽  
Narinder Kaur ◽  
Archana Sharma ◽  
...  

Whilst both cardiac output (CO) and total peripheral resistance (TPR) determine mean arterial blood pressure (MAP), their relative importance in the pressor response to isometric exercise remains unclear. This study aimed to elucidate the relative importance of these two different factors by examining pressor responses during cardiopulmonary unloading leading to step-wise reductions in CO. Hemodynamics were investigated in 11 healthy individuals before, during and after two-minute isometric exercise during lower body negative pressure (LBNP; -20mmHg and -40mmHg). The blood pressure response to isometric exercise was similar during normal and reduced preload, despite a step-wise reduction in CO during LBNP (-20mmHg and -40mmHg). During -20mmHg LBNP, the decreased stroke volume, and consequently CO, was counteracted by an increased TPR, while heart rate (HR) was unaffected. HR was increased during -40 mmHg LBNP, although insufficient to maintain CO; the drop in CO was perfectly compensated by an increased TPR to maintain MAP. Likewise, transient application of LBNP (-20mmHg and -40mmHg) resulted in a short transient drop in MAP, caused by a decrease in CO, which was compensated by an increase in TPR. This study suggests that, in case of reductions of CO, changes in TPR are primarily responsible for maintaining the pressor response during isometric exercise. This highlights the relative importance of TPR compared to CO in mediating the pressor response during isometric exercise.


1996 ◽  
Vol 90 (6) ◽  
pp. 485-492 ◽  
Author(s):  
K. J. Collins ◽  
T. A. Abdel-Rahman ◽  
J. C. Easton ◽  
P. Sacco ◽  
J. Ison ◽  
...  

1. The effects of convective facial cooling by cold air on arterial blood pressure, heart rate and finger blood flow and on the reflex interactions between facial cooling and respiratory and orthostatic cardiac reflexes have been examined in 28 young adults (20–39 years) and 17 elderly (66–78 years) volunteer subjects. 2. During 2 min facial cooling alone, bradycardia was smaller (P < 0.001) and reduction in finger blood flow smaller (P < 0.001) in elderly subjects than in young subjects. Increases in systolic blood pressure and mean arterial pressure were similar and diastolic pressure increased only in the young subjects. Systolic blood pressure and mean arterial pressure remained elevated in the elderly 1 min after facial cooling, but subsided in the young. 3. Arterial blood pressure increased more during a 30-s breath-hold in expiration than in inspiration (P < 0.001) in both groups, and this was exaggerated by breath-hold in expiration combined with facial cooling. The bradycardia produced by facial cooling and breath-holding in expiration was more pronounced in the young subjects than in the elderly (P < 0.002). 4. Interactions between facial cooling and orthostatic reflexes induced by lower-body negative pressure showed significantly different age-related linear trends. Facial cooling diminished the hypotension induced by lower-body negative pressure in both groups. Facial cooling had a greater effect in diminishing the lower-body negative pressure-induced tachycardia in the young than in the elderly. 5. The mechanism of alteration of the facial cooling response in elderly subjects could be largely impairment of arterial baroreflexes, particularly as a result of reduced cardiac vagal activity as well as impairment of cardiopulmonary reflexes with ageing.


2001 ◽  
Vol 86 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ichiro Hidaka ◽  
Shin-Ichi Ando ◽  
Hideaki Shigematsu ◽  
Koji Sakai ◽  
Soko Setoguchi ◽  
...  

By injecting noise into the carotid sinus baroreceptors, we previously showed that heart rate (HR) responses to weak oscillatory tilt were enhanced via a mechanism known as “stochastic resonance.” It remains unclear, however, whether the same responses would be observed when using oscillatory lower body negative pressure (LBNP), which would unload the cardiopulmonary baroreceptors with physically negligible effects on the arterial system. Also, the vasomotor sympathetic activity directly controlling peripheral resistance against hypotensive stimuli was not observed. We therefore investigated the effects of weak (0 to approximately −10 mmHg) oscillatory (0.03 Hz) LBNP on HR and muscle sympathetic nerve activity (MSNA) while adding incremental noise to the carotid sinus baroreceptors via a pneumatic neck chamber. The signal-to-noise ratio of HR, cardiac interbeat interval, and total MSNA were all significantly improved by increasing noise intensity, while there was no significant change in the arterial blood pressure in synchronized with the oscillatory LBNP. We conclude that the stochastic resonance, affecting both HR and MSNA, results from the interaction of noise with the signal in the brain stem, where the neuronal inputs from the arterial and cardiopulmonary baroreceptors first come together in the nucleus tractus solitarius. Also, these results indicate that the noise could induce functional improvement in human blood pressure regulatory system in overcoming given hypotensive stimuli.


1990 ◽  
Vol 68 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
M. J. Joyner ◽  
J. T. Shepherd ◽  
D. R. Seals

The purpose of this study was to determine whether prolonged unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP) causes constant increases in sympathetic outflow to skeletal muscles. Eight healthy subjects underwent a 20-min control period followed by 20 min of 15-mmHg LBNP. This pressure was selected because it did not cause any significant change in mean arterial blood pressure (sphygmomanometry) or heart rate, suggesting that the cardiopulmonary baroreceptors were selectively unloaded and the activity of the arterial baroreceptors was unchanged. Muscle sympathetic nerve activity in the peroneal nerve (MSNA, microneurography) increased from an average of 21.8 +/- 1.7 bursts/min over the last 5 min of control to 29.0 +/- 2.9 bursts/min during the 1st min of LBNP (P less than 0.05 LBNP vs. control). The increase in MSNA observed during the 1st min was sustained throughout LBNP. Forelimb blood flow (plethysmography) decreased abruptly at the onset of the LBNP from a control value of 4.3 +/- 0.5 ml.min-1.100 ml-1 to 2.5 +/- 0.2 at the 1st min; the flow then increased and remained significantly above this value, but below the control value, throughout LBNP. Similar blood flow findings were obtained in additional studies, when the hand circulation was excluded during the flow measurements. Forearm skin blood flow (laser Doppler) also decreased abruptly at the onset of LBNP and was followed by partial recovery, but these changes were too small to account for all the increases in limb blood flow over the course of LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 255 (1) ◽  
pp. R149-R156 ◽  
Author(s):  
K. Sander-Jensen ◽  
J. Mehlsen ◽  
C. Stadeager ◽  
N. J. Christensen ◽  
J. Fahrenkrug ◽  
...  

Progressive central hypovolemia is characterized by a normotensive, tachycardic stage followed by a reversible, hypotensive stage with slowing of the heart rate (HR). We investigated circulatory changes and arterial hormone concentrations in response to lower-body negative pressure (LBNP) in six volunteers before and after atropine administration. LBNP of 55 mmHg initially resulted in an increase in HR from 55 +/- 4 to 90 +/- 5 beats/min and decreases in mean arterial pressure (MAP) from 94 +/- 4 to 81 +/- 5 mmHg, in central venous pressure from 7 +/- 1 to -3 +/- 1 mmHg, and in cardiac output from 6.1 +/- 0.5 to 3.7 +/- 0.11/min. Concomitantly, epinephrine and norepinephrine levels increased. After 8.2 +/- 2.3 min of LBNP, the MAP had decreased to 41 +/- 7 mmHg and HR had decreased to 57 +/- 3 beats/min. Vasopressin increased from 1.2 +/- 0.3 to 137 +/- 45 pg/ml and renin activity increased from 1.45 +/- 4.0 to 3.80 +/- 1.0 ng.ml-1.h-1 with no further changes in epinephrine, norepinephrine, and vasoactive intestinal polypeptide. A tardy rise in pancreatic polypeptide indicated increased vagal activity. After atropine. LBNP also caused an initial increase in HR, which, however, remained elevated during the subsequent decrease in MAP to 45 +/- 6 mmHg occurring after 8.1 +/- 2.4 min.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document