Baroreflexes prevent neurally induced sodium retention in angiotensin hypertension

2000 ◽  
Vol 279 (4) ◽  
pp. R1437-R1448 ◽  
Author(s):  
Thomas E. Lohmeier ◽  
Justin R. Lohmeier ◽  
Atif Haque ◽  
Drew A. Hildebrandt

Recent studies indicate that renal sympathetic nerve activity is chronically suppressed during ANG II hypertension. To determine whether cardiopulmonary reflexes and/or arterial baroreflexes mediate this chronic renal sympathoinhibition, experiments were conducted in conscious dogs subjected to unilateral renal denervation and surgical division of the urinary bladder into hemibladders to allow separate 24-h urine collection from denervated (Den) and innervated (Inn) kidneys. Dogs were studied 1) intact, 2) after thoracic vagal stripping to eliminate afferents from cardiopulmonary and aortic receptors [cardiopulmonary denervation (CPD)], and 3) after subsequent denervation of the carotid sinuses to achieve CPD plus complete sinoaortic denervation (CPD + SAD). After control measurements, ANG II was infused for 5 days at a rate of 5 ng · kg−1 · min−1. In the intact state, 24-h control values for mean arterial pressure (MAP) and the ratio for urinary sodium excretion from Den and Inn kidneys (Den/Inn) were 98 ± 4 mmHg and 1.04 ± 0.04, respectively. ANG II caused sodium retention and a sustained increase in MAP of 30–35 mmHg. Throughout ANG II infusion, there was a greater rate of sodium excretion from Inn vs. Den kidneys ( day 5 Den/Inn sodium = 0.51 ± 0.05), indicating chronic suppression of renal sympathetic nerve activity. CPD and CPD + SAD had little or no influence on baseline values for either MAP or the Den/Inn sodium, nor did they alter the severity of ANG II hypertension. However, CPD totally abolished the fall in the Den/Inn sodium in response to ANG II. Furthermore, after CPD + SAD, there was a lower, rather than a higher, rate of sodium excretion from Inn vs. Den kidneys during ANG II infusion ( day 5 Den/Inn sodium = 2.02 ± 0.14). These data suggest that cardiac and/or arterial baroreflexes chronically inhibit renal sympathetic nerve activity during ANG II hypertension and that in the absence of these reflexes, ANG II has sustained renal sympathoexcitatory effects.

2001 ◽  
Vol 281 (2) ◽  
pp. R434-R443 ◽  
Author(s):  
Thomas E. Lohmeier ◽  
Justin R. Lohmeier ◽  
Jane F. Reckelhoff ◽  
Drew A. Hildebrandt

Recent studies indicate that baroreflex suppression of renal sympathetic nerve activity is sustained for up to 5 days of ANG II infusion; however, steady-state conditions are not associated with ANG II hypertension of this short duration. Thus the major goal of this study was to determine whether neurally induced increments in renal excretory function during chronic intravenous infusion of ANG II are sustained under more chronic conditions when hypertension is stable and sodium balance is achieved. Experiments were conducted in five conscious dogs subjected to unilateral renal denervation and surgical division of the urinary bladder into hemibladders to allow separate 24-h urine collection from denervated (Den) and innervated (Inn) kidneys. ANG II was infused after control measurements for 10 days at a rate of 5 ng · kg−1 · min−1. Twenty-four-hour control values for mean arterial pressure (MAP) and the ratio for urinary sodium excretion from Den and Inn kidneys (Den/Inn) were 92 ± 4 mmHg and 0.99 ± 0.05, respectively. On days 8–10 of ANG II infusion, MAP was stable (+30 ± 3 mmHg) and sodium balance was achieved. Whereas equal amounts of sodium were excreted from the kidneys during the control period, throughout ANG II infusion there was a greater rate of sodium excretion from Inn vs. Den kidneys ( day 10 Den/Inn sodium = 0.56 ± 0.05), indicating chronic suppression of renal sympathetic nerve activity. The greater rate of sodium excretion in Inn vs. Den kidneys during renal sympathoinhibition also revealed a latent impairment in sodium excretion from Den kidneys. Although the Den/Inn for sodium and the major metabolites of nitric oxide (NO) decreased in parallel during ANG II hypertension, the Den/Inn for cGMP, a second messenger of NO, remained at control levels throughout this study. This disparity fails to support the notion that a deficiency in NO production and action in Den kidneys accounts for the impaired sodium excretion. Most importantly, these results support the contention that baroreflex suppression of renal sympathetic nerve activity is sustained during chronic ANG II hypertension, a response that may play an important role in attenuating the rise in arterial pressure.


2000 ◽  
Vol 279 (4) ◽  
pp. H1804-H1812 ◽  
Author(s):  
Max G. Sanderford ◽  
Vernon S. Bishop

Acutely increasing peripheral angiotensin II (ANG II) reduces the maximum renal sympathetic nerve activity (RSNA) observed at low mean arterial blood pressures (MAPs). We postulated that this observation could be explained by the action of ANG II to acutely increase arterial blood pressure or increase circulating arginine vasopressin (AVP). Sustained increases in MAP and increases in circulating AVP have previously been shown to attenuate maximum RSNA at low MAP. In conscious rabbits pretreated with an AVP V1 receptor antagonist, we compared the effect of a 5-min intravenous infusion of ANG II (10 and 20 ng · kg−1 · min−1) on the relationship between MAP and RSNA when the acute pressor action of ANG II was left unopposed with that when the acute pressor action of ANG II was opposed by a simultaneous infusion of sodium nitroprusside (SNP). Intravenous infusion of ANG II resulted in a dose-related attenuation of the maximum RSNA observed at low MAP. When the acute pressor action of ANG II was prevented by SNP, maximum RSNA at low MAP was attenuated, similar to that observed when ANG II acutely increased MAP. In contrast, intravertebral infusion of ANG II attenuated maximum RSNA at low MAP significantly more than when administered intravenously. The results of this study suggest that ANG II may act within the central nervous system to acutely attenuate the maximum RSNA observed at low MAP.


1999 ◽  
Vol 276 (5) ◽  
pp. R1295-R1301 ◽  
Author(s):  
Jeffrey L. Segar ◽  
Oliva J. Smith ◽  
Aaron T. Holley

Physiological responses at birth include increases in heart rate (HR), blood pressure, sympathetic nerve activity, and circulating vasoactive peptides. The factors mediating these responses are not known. To test the hypothesis that afferent input from peripheral mechanoreceptors (arterial and cardiopulmonary baroreceptors) and chemoreceptors contribute to the sympathoexcitatory and hormonal responses at birth, we studied the effects of sinoaortic denervation (SAD) and SAD with vagotomy (Vx) on changes in HR, mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and catecholamine, arginine vasopressin (AVP), and ANG II levels at birth in term sheep. One hour after delivery by cesarean section, RSNA increased by 168 ± 49 and 192 ± 32% (relative to fetal values) in SAD and SAD-Vx animals, respectively. Significant increases in HR (18 ± 5 and 20 ± 6%) and MABP (24 ± 4 and 20 ± 5%) were also observed 1 h after delivery in SAD and SAD-Vx lambs, respectively. These responses are similar to those seen in intact sheep delivered at the same gestational age. AVP levels markedly increased after birth (19.8 ± 6.7 to 136.1 ± 75.9 pg/ml) in SAD-Vx lambs, whereas SAD animals displayed no change in AVP concentrations. Plasma ANG II also did not change after birth in either group, although levels were consistently higher ( P < 0.01) in SAD compared with SAD-Vx animals. In the presence of SAD, Vx resulted in significantly greater plasma levels of norepinephrine, although levels did not change after birth in either group. The epinephrine responses at birth were similar in both groups of animals. The present data suggest that afferent input from peripheral chemoreceptors and mechanoreceptors contributes little to the hemodynamic and sympathetic responses after delivery by cesarean section. On the other hand, these peripheral mechanisms appear to be involved in modulating endocrine responses at birth.


2009 ◽  
Vol 297 (5) ◽  
pp. R1364-R1374 ◽  
Author(s):  
Hong Zheng ◽  
Yi-Fan Li ◽  
Wei Wang ◽  
Kaushik P. Patel

Chronic heart failure (HF) is characterized by increased sympathetic drive. Enhanced angiotensin II (ANG II) activity may contribute to the increased sympathoexcitation under HF condition. The present study examined sympathoexcitation by 1) the effects of ANG II in the paraventricular nucleus (PVN) on renal sympathetic nerve activity (RSNA), and 2) the altered ANG II type 1 (AT1) receptor expression during HF. Left coronary artery ligation was used to induce HF. In the anesthetized Sprague-Dawley rats, microinjection of ANG II (0.05–1 nmol) into the PVN increased RSNA, mean arterial pressure (MAP), and heart rate (HR) in both sham-operated and HF rats. The responses of RSNA and HR were significantly enhanced in rats with HF compared with sham rats (RSNA: 64 ± 8% vs. 33 ± 4%, P < 0.05). Microinjection of AT1 receptor antagonist losartan into the PVN produced a decrease of RSNA, MAP, and HR in both sham and HF rats. The RSNA and HR responses to losartan in HF rats were significantly greater (RSNA: −25 ± 4% vs. −13 ± 1%, P < 0.05). Using RT-PCR and Western blot analysis, we found that there were significant increases in the AT1 receptor mRNA (Δ186 ± 39%) and protein levels (Δ88 ± 20%) in the PVN of rats with HF ( P < 0.05). The immunofluorescence of AT1 receptors was significantly higher in the PVN of rats with HF. These data support the conclusion that an increased angiotensinergic activity on sympathetic regulation, due to the upregulation of ANG II AT1 receptors within the PVN, may contribute to the elevated sympathoexcitation that is observed during HF.


1989 ◽  
Vol 256 (2) ◽  
pp. R299-R305 ◽  
Author(s):  
K. Miki ◽  
Y. Hayashida ◽  
S. Sagawa ◽  
K. Shiraki

The role of renal sympathetic nerve activity (RSNA) in the natriuresis and diuresis induced by head-out water immersion (WI) was studied in eight conscious female dogs. The dog was instrumented chronically with a stainless steel electrode for the measurement of RSNA and two catheters for the measurements of systemic arterial (Pa) and central venous (Pv) pressures. The WI caused an immediate reduction of RSNA by 43 +/- 7% (P less than 0.05), and this low level was sustained throughout a 120-min WI under thermoneutral conditions (37 degrees C). Urine flow and sodium excretion increased by 211 +/- 54 (P less than 0.05) and 240 +/- 122% (P less than 0.05), respectively, but creatinine clearance did not change significantly during WI. A step increase in Pa (by 10 +/- 4 mmHg, P less than 0.05) and Pv (by 10.0 +/- 0.8 mmHg, P less than 0.05) was observed also during WI. In another series of studies, renal denervations were performed 2-4 wk before the experiment in six of the same dogs. Dogs with renal denervation showed no significant changes in urine flow and sodium excretion in response to WI, whereas Pa and Pv increased by 10 +/- 7 and 10.0 +/- 2.0 mmHg relative to the control level, respectively. It is concluded that the reduction of RSNA observed during WI plays a major role in the natriuresis in the dog.


2004 ◽  
Vol 286 (4) ◽  
pp. H1258-H1265 ◽  
Author(s):  
Donogh F. McKeogh ◽  
Theresa L. O'Donaughy ◽  
Virginia L. Brooks

Nitric oxide (NO) appears to inhibit sympathetic tone in anesthetized rats. However, whether NO tonically inhibits sympathetic outflow, or whether endogenous angiotensin II (ANG II) promotes NO-mediated sympathoinhibition in conscious rats is unknown. To address these questions, we determined the effects of NO synthase (NOS) inhibition on renal sympathetic nerve activity (RSNA) and heart rate (HR) in conscious, unrestrained rats on normal (NS), high-(HS), and low-sodium (LS) diets, in the presence and absence of an ANG II receptor antagonist (AIIRA). When arterial pressure was kept at baseline with intravenous hydralazine, NOS inhibition with l-NAME (10 mg/kg iv) resulted in a profound decline in RSNA, to 42 ± 11% of control ( P < 0.01), in NS animals. This effect was not sustained, and RSNA returned to control levels by 45 min postinfusion. l-NAME also caused bradycardia, from 432 ± 23 to 372 ± 11 beats/min postinfusion ( P < 0.01), an effect, which, in contrast, was sustained 60 min postdrug. The effects of NOS inhibition on RSNA and HR did not differ between NS, HS, and LS rats. However, when LS and HS rats were pretreated with AIIRA, the initial decrease in RSNA after l-NAME infusion was absent in the LS rats, while the response in the HS group was unchanged by AIIRA. These findings indicate that, in contrast to our hypotheses, NOS activity provides a stimulatory input to RSNA in conscious rats, and that in LS animals, but not HS animals, this sympathoexcitatory effect of NO is dependent on the action of endogenous ANG II.


2002 ◽  
Vol 282 (5) ◽  
pp. H1592-H1602 ◽  
Author(s):  
Max G. Sanderford ◽  
Vernon S. Bishop

Short-term intravenous infusion of angiotensin II (ANG II) into conscious rabbits reduces the range of renal sympathetic nerve activity (RSNA) by attenuating reflex disinhibition of RSNA. This action of ANG II to attenuate the arterial baroreflex range is exaggerated when ANG II is directed into the vertebral circulation, which suggests a mechanism involving the central nervous system. Because an intact area postrema (AP) is required for ANG II to attenuate arterial baroreflex-mediated bradycardia and is also required for maintenance of ANG II-dependent hypertension, we hypothesized that attenuation of maximum RSNA during infusion of ANG II involves the AP. In conscious AP-lesioned (APX) and AP-intact rabbits, we compared the effect of a 5-min intravenous infusion of ANG II (10 and 20 ng · kg−1 · min−1) on the relationship between mean arterial blood pressure (MAP) and RSNA. Intravenous infusion of ANG II into AP-intact rabbits resulted in a dose-related attenuation of maximum RSNA observed at low MAP. In contrast, ANG II had no effect on maximum RSNA in APX rabbits. To further localize the central site of ANG II action, its effect on the arterial baroreflex was assessed after a midcollicular decerebration. Decerebration did not alter arterial baroreflex control of RSNA compared with the control state, but as in APX, ANG II did not attenuate the maximum RSNA observed at low MAP. The results of this study indicate that central actions of peripheral ANG II to attenuate reflex disinhibition of RSNA not only involve the AP, but may also involve a neural interaction rostral to the level of decerebration.


Sign in / Sign up

Export Citation Format

Share Document