Fluidity of brush border and basolateral membranes from human kidney cortex

1983 ◽  
Vol 245 (2) ◽  
pp. F227-F231 ◽  
Author(s):  
C. Le Grimellec ◽  
S. Carriere ◽  
J. Cardinal ◽  
M. C. Giocondi

The physical state of lipids in brush border and basolateral membrane vesicles prepared from normal human kidney cortex was investigated by fluorescence polarization and electron spin resonance. At physiologic temperature, lipids were significantly less ordered, i.e., more fluid, in basolateral than in brush border membranes. This difference was also observed using corresponding liposomes made from total lipid extracts. For both brush border and basolateral membranes, temperature-dependent experiments revealed the existence of a broad thermotropic transition extending approximately from 20 to 42 degrees C. These data are interpreted to indicate that plasma membranes from human kidney cortex function physiologically at the upper critical temperature of a transition that probably corresponds to a liquid crystalline-to-gel lipid phase separation.

1980 ◽  
Vol 238 (6) ◽  
pp. F452-F460 ◽  
Author(s):  
S. Grinstein ◽  
R. J. Turner ◽  
M. Silverman ◽  
A. Rothstein

The efflux of inorganic anions from purified brush border and basolateral membrane vesicles from dog kidney cortex was measured under equilibrium exchange conditions. Marked differences in temperature sensitivity and effects of inhibitors were found between the Cl and SO4 transport pathways and between the two types of membranes. SO4 transport in both brush border and basolateral membranes was markedly reduced by cooling, but significant inhibition by 4,4'–diisothiocyano-2,2'–disulfonic stilbene (DIDS) was only observed in basolateral vesicles. In contrast, Cl efflux from both types of vesicles was neither substantially inhibited by DIDS nor by lowering the temperature to 0 degrees C. Phosphate efflux from basolateral membrane vesicles was found to be only partially sensitive to DIDS. Attempts to label the stilbene-sensitive SO4 pathway in basolateral vesicles using [3H2]DIDS as a marker were unsuccessful due to the nonspecific labeling of many membrane components. The asymmetry in inorganic anion transport behavior exhibited by brush border and basolateral membrane vesicles from dog renal proximal tubule was also observed in equivalent vesicles prepared from rat small intestine.


1987 ◽  
Vol 246 (2) ◽  
pp. 543-545 ◽  
Author(s):  
B Hagenbuch ◽  
G Stange ◽  
H Murer

Basolateral membrane vesicles were isolated from rat kidney cortex and small intestinal enterocytes. Both membrane preparations show ATP-dependent calcium uptake and cytochalasin B-sensitive D-glucose transport. In renal membranes, sodium influx is stimulated by bicarbonate; bicarbonate-dependent sodium flux is membrane-potential-dependent and inhibited by 4,4′-di-isothiocyanato-2, 2′-stilbenedisulphanic acid (‘DIDS’). Small intestinal basolateral membranes do not show bicarbonate-dependent sodium fluxes.


1986 ◽  
Vol 250 (2) ◽  
pp. F226-F234 ◽  
Author(s):  
C. Bastlein ◽  
G. Burckhardt

4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) was tested as an inhibitor of the sulfate transport systems in rat renal brush border and basolateral membrane vesicles. Na+-driven sulfate uptake into brush border membrane vesicles was half-maximally inhibited at 350 microM DIDS. Proton gradient-driven sulfate uptake into basolateral membrane vesicles was competitively inhibited by DIDS with a Ki of 2.4 microM. The Km for delta pH-driven sulfate uptake was 5.4 microM. The different affinities of the sulfate transport systems for DIDS correlated with different substrate specificities. The luminal transport system accepted a smaller range of anions than the contraluminal system and did not operate as a Na+-independent anion exchanger. After treatment of basolateral membrane vesicles with 50 microM DIDS at pH 8.4 for 30 min, an irreversible inhibition of sulfate uptake was observed. With brush border membranes, only a small irreversible inhibition was obtained. Lack of inhibition after treatment of basolateral membranes with DIDS at pH 6.4 indicated that DIDS reacted with deprotonated amino groups of the transport protein. Sulfate was protected from the irreversible inhibition by DIDS. Sodium-driven uptake of L-glutamate and methylsuccinate into basolateral membrane vesicles was not irreversibly inhibited by DIDS, indicating a specific action of DIDS on the contraluminal sulfate transport system. Irreversible and substrate-protectable inhibition of sulfate transport render DIDS suitable for future affinity labeling studies on the sulfate transport system in basolateral membranes.


1984 ◽  
Vol 246 (5) ◽  
pp. F663-F669 ◽  
Author(s):  
S. J. Schwab ◽  
S. Klahr ◽  
M. R. Hammerman

To ascertain whether Na+ gradient-stimulated 32Pi uptake was demonstrable in renal basolateral membrane vesicles, we measured 32Pi uptake in basolateral membrane suspensions isolated from canine renal cortex and compared solute uptake in basolateral suspensions with that measured in brush border suspensions. Measurements revealed Na+ gradient-dependent 32Pi transport in basolateral preparations. D-[3H] Glucose uptakes in basolateral suspensions were not stimulated by the Na+ gradient in contrast to findings in brush border suspensions. Na+ gradient-dependent 32Pi transport in basolateral suspensions was electrogenic in contrast to that measured in brush border preparations. Unlike 32Pi uptake in brush border preparations, Na+ gradient-dependent 32Pi uptake in basolateral suspensions did not increase as extravesicular pH was increased from 6.5 to 7.5. Na+ gradient-dependent 32Pi uptake in basolateral membranes showed saturation over the range of [Pi] from 5 to 100 microM (apparent Km, 14 +/- 2 microM; apparent Vmax, 34 +/- 2 pmol Pi X mg protein-1 X 30s-1). Our findings are compatible with the presence of an electrogenic Na+-Pi cotransporter in the canine proximal tubular basolateral membrane.


1985 ◽  
Vol 248 (6) ◽  
pp. F835-F844 ◽  
Author(s):  
I. Sabolic ◽  
W. Haase ◽  
G. Burckhardt

The presence of membrane vesicles containing an ATP-driven H+ pump was demonstrated in rat kidney cortex homogenate using the delta pH-sensitive dye acridine orange (AO). These vesicles were purified by differential and Percoll density gradient centrifugation. ATP-driven H+ uptake was about 20-fold enriched compared with the homogenate. Determination of marker enzyme activities indicated that these vesicles do not originate from brush border and basolateral membranes, lysosomes, endoplasmic reticulum, mitochondria, Golgi membranes, or red blood cells. The identity with brush border membranes was further excluded by the absence of Na+-H+ exchange. Renal cortical endocytotic vesicles that had taken up horseradish peroxidase or fluorescein isothiocyanate-labeled dextran (FITC-dextran) after injection of these substances into rats in vivo comigrated with the H+ pump activity on the Percoll gradient. Similar characteristics of the H+ pump demonstrated by the AO method and by fluorescence changes of in vivo trapped FITC-dextran proved the identity of H+ pump-containing vesicles with endocytotic vesicles. ATP-driven H+ uptake into endocytotic vesicles was stimulated by Cl- and weakly inhibited by oligomycin. N-ethylmaleimide, dicyclohexylcarbodiimide, and Dio-9 were stronger inhibitors. Histochemical studies revealed that horseradish peroxidase-filled endocytotic vesicles are localized in the apical region of proximal tubule cells. An H+ pump with similar characteristics, but much lower activity, was found in brush border membranes, basolateral membranes, and mitochondria isolated by standard techniques, suggesting a possible contamination of these preparations with endocytotic vesicles.


Sign in / Sign up

Export Citation Format

Share Document