Afferent arteriolar diameter in DOCA-salt and two-kidney one-clip hypertensive rats

1983 ◽  
Vol 245 (6) ◽  
pp. F755-F762 ◽  
Author(s):  
B. M. Iversen ◽  
L. Morkrid ◽  
J. Ofstad

The afferent arteriolar diameter (dAA) was investigated during development of hypertensive renal disease in normal and uninephrectomized control rats, in chronic DOCA-salt (DOCA), post-DOCA (p-DOCA), and chronic two-kidney one-clip (2K-1C) hypertensive rats, and in post-two-kidney one-clip (p-2K-1C) normotensive rats. dAA was measured by the microsphere method. Nephron loss was present in the kidneys exposed to elevate blood pressure. The dAA was reduced from 19.9 to 17.2 micron in the DOCA group (P less than 0.001) and from 19.1 to 16.3 micron in the nonclipped kidneys in the 2K-1C group (P less than 0.001). The dAA increased from 19.9 to 20.7 micron in the p-DOCA group. Afferent arteriolar dilatation from 19.1 to 21.0 micron (P less than 0.001) was present about 50 days after clipping in the 2K-1C group; in the clipped kidneys the dAA returned to normal (18.9 micron) after declipping. No relation between the dAA and plasma renin concentration was observed. In all models dAA was the same in three cortical layers of equal thickness. Accordingly, chronic renal DOCA-salt hypertension constricts the afferent arteriole with angiotensin-independent mechanisms. Autoregulatory dilatation of the afferent arteriole seems to be maintained for at least 50 days. When the hypertension is moderate, dAA in damaged kidneys may be dilated.

1981 ◽  
Vol 97 (4) ◽  
pp. 525-532 ◽  
Author(s):  
Hiromichi Suzuki ◽  
Kazuoki Kondo ◽  
Takao Saruta

Abstract. The present study was performed to assess the influence of potassium on blood pressure in deoxycorticosterone (DOCA) salt hypertensive rats. The effects of potassium administration on the systolic blood pressure, fluid intake, urine volume, excretion of sodium and potassium, serum sodium and potassium, plasma renin activity (PRA) and plasma aldosterone concentration (PAC) were investigated both during the first 2 weeks of development of DOCA salt hypertension and during the next 2 weeks of established DOCA salt hypertension. Potassium administration prevented the development of DOCA salt hypertension and reduced the blood pressure in established DOCA salt hypertension. Fluid intake, urine volume, and excretion of sodium and potassium appeared to be markedly increased in rats treated with potassium. The levels of serum sodium and potassium were unchanged by potassium loading. Both the PRA and PAC which were suppressed in DOCA salt hypertensive rats, were reversed in rats treated by potassium loading. It is suggested that the elevation of blood pressure may be prevented and the increased blood pressure reduced mainly by the diuresis and natriuresis caused by potassium loading.


1979 ◽  
Vol 236 (3) ◽  
pp. H409-H416 ◽  
Author(s):  
M. Shibota ◽  
A. Nagaoka ◽  
A. Shino ◽  
T. Fujita

The development of malignant hypertension was studied in stroke-prone spontaneously hypertensive rats (SHR) kept on 1% NaCl as drinking water. Along with salt-loading, blood pressure gradually increased and reached a severe hypertensive level (greater than 230 mmHg), which was followed by increases in urinary protein (greater than 100 (mg/250 g body wt)/day) and plasma renin concentration (PRC, from 18.9 +/- 0.1 to 51.2 +/- 19.4 (ng/ml)/h, mean +/- SD). At this stage, renal small arteries and arterioles showed severe sclerosis and fibrinoid necrosis. Stroke was observed within a week after the onset of these renal abnormalities. The dose of exogenous angiotensin II (AII) producing 30 mmHg rise in blood pressure increased with the elevation of PRC, from 22 +/- 12 to 75 +/- 36 ng/kg, which was comparable to that in rats on water. The fall of blood pressure due to an AII inhibitor, [1-sarcosine, 8-alanine]AII (10(microgram/kg)/min for 40 min) became more prominent with the increase in PRC in salt-loaded rats, but was not detected in rats on water. These findings suggest that the activation of renin-angiotensin system participates in malignant hypertension of salt-loaded stroke-prone SHR rats that show stroke signs, proteinuria, hyperreninemia, and renovascular changes.


1989 ◽  
Vol 257 (2) ◽  
pp. F197-F203 ◽  
Author(s):  
R. Rettig ◽  
H. Stauss ◽  
C. Folberth ◽  
D. Ganten ◽  
B. Waldherr ◽  
...  

We determined whether transplantations of kidneys from stroke-prone spontaneously hypertensive rats (SPSHR) and from normotensive Wistar-Kyoto rats (WKY) alter blood pressure in renal graft recipients. Kidneys taken from seven male SPSHR and seven male WKY rats (blood pressure 186 +/- 4.8 and 111 +/- 3.7 mmHg, respectively) at the age of 20 wk were transplanted, using microsurgical techniques, to bilaterally nephrectomized age-matched male F1 hybrids (blood pressure 136 +/- 2.6 and 138 +/- 6.3 mmHg, respectively) bred from SPSHR and WKY parents. After renal transplantation, blood pressure in recipients of SPSHR kidneys rose to 146 +/- 11.8 (week 2), 163 +/- 16.4 (week 3), 192 +/- 17.1 (week 4), 222 +/- 17.7 (week 5), 221 +/- 12.6 (week 6), 218 +/- 20.3 (week 7), and 239 +/- 9.2 mmHg (week 8). There was no significant change in blood pressure in recipients of WKY kidneys. All rats recovered rapidly from surgery. After renal transplantation, there was a significant increase in daily water intake, a decrease in plasma renin activity, and a slight rise in plasma urea concentration. Our data show that transplantation of kidneys from adult SPSHR causes hypertension in normotensive recipients, indicating a major function for the kidney in SPSHR hypertension.


1999 ◽  
Vol 276 (3) ◽  
pp. H944-H952 ◽  
Author(s):  
Stephanie W. Watts ◽  
Gregory D. Fink

We previously demonstrated a change in the receptors mediating 5-hydroxytryptamine (5-HT)-induced contraction in arteries of deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Specifically, contraction to 5-HT is mediated primarily by 5-HT2A receptors in arteries from normotensive sham rats and by both 5-HT2A and 5-HT2B receptors in arteries from hypertensive rats. We hypothesized that the 5-HT2B receptor may play a role in maintaining the high blood pressure of DOCA-salt-hypertensive rats, and herein we provide data connecting in vitro and in vivo findings. The endothelium-denuded isolated superior mesenteric artery of DOCA-salt rats displayed a marked increase in maximum contraction to the newly available 5-HT2B-receptor agonist BW-723C86 compared with that of arteries from sham rats, confirming that the 5-HT2B receptor plays a greater role in 5-HT-induced contraction in arteries from DOCA-salt rats. In chronically instrumented rats, the 5-HT2B-receptor antagonist LY-272015 (0.3, 1.0, and 3.0 mg/kg iv at 30-min intervals) was given cumulatively 1 time/wk during 4 wk of continued DOCA-salt treatment. LY-272015 did not reduce blood pressure of the sham-treated rats at any time or dose. However, LY-272015 (1.0 and 3.0 mg/kg) significantly reduced mean blood pressure in a subgroup of week 3 (−20 mmHg) and week 4 DOCA-salt (−40 mmHg) rats that had extremely high blood pressure (mean arterial blood pressure ∼200 mmHg). Blockade of 5-HT2Breceptors by in vivo administration of LY-272015 (3.0 mg/kg) was verified by observing reduced 5-HT-induced contraction in rat stomach fundus, the tissue from which the 5-HT2B receptor was originally cloned. These data support the novel hypothesis that 5-HT2B-receptor expression is induced during the development of DOCA-salt hypertension and contributes to the maintenance of severe blood pressure elevations.


1982 ◽  
Vol 32 (4) ◽  
pp. 742-745 ◽  
Author(s):  
Yukio HASEGAWA ◽  
Takushi X. WATANABE ◽  
Koichiro KAWASHIMA ◽  
Hirofumi SOKABE ◽  
Ken SAITO

1979 ◽  
Vol 57 (s5) ◽  
pp. 47s-50s ◽  
Author(s):  
E. S. Marks ◽  
H. Thurston ◽  
R. F. Bing ◽  
J. D. Swales

1. The pressor response to angiotensin II was reduced in rats with early (<6 weeks) and chronic (>4 months) Goldblatt two-kidney, one-clip hypertension and enhanced in DOCA—salt hypertension. 2. Converting enzyme inhibition with captopril brought the angiotensin pressor response curves into closer proximity although the DOCA hypertensive rats were minimally hyper-responsive and rats with early and chronic renovascular hypertension showed slightly reduced responsiveness. 3. After bilateral nephrectomy the pressor responses to angiotensin were similar. 4. The pressor response to angiotensin II in these animals was inversely related to plasma renin concentration and therefore largely dependent upon receptor occupancy by endogenous angiotensin II. There is no evidence for enhanced pressor responsiveness to angiotensin in either renovascular or DOCA hypertension.


1981 ◽  
Vol 61 (s7) ◽  
pp. 335s-338s ◽  
Author(s):  
R. F. Bing ◽  
G. I. Russell ◽  
J. D. Swales ◽  
H. Thurston ◽  
A. Fletcher

1. Chemical renal medullectomy was produced in rats by injection of 2-bromoethylamine hydrobromide. Plasma creatinine and blood pressure were unchanged although urine volume was increased fourfold. 2. Left renal artery constriction resulted in similar degrees of hypertension in both intact and medullectomized rats. This was associated with a significantly smaller rise in plasma renin concentration in the latter. 3. Blood pressure in conscious intact hypertensive rats became normal within 24 h of unclipping whereas blood pressure of medullectomized rats remained significantly elevated. 4. The presence of an intact renal medulla is essential to the complete reversal of two-kidney, one-clip hypertension in the rat. This may reflect the loss of a medullary vasodepressor system.


Sign in / Sign up

Export Citation Format

Share Document