scholarly journals Chronic effects of Bunitrolol and Pindolol on blood pressure,heart rate,vascular lesions,and plasma renin activity in hypertensive rats.

1982 ◽  
Vol 32 (4) ◽  
pp. 742-745 ◽  
Author(s):  
Yukio HASEGAWA ◽  
Takushi X. WATANABE ◽  
Koichiro KAWASHIMA ◽  
Hirofumi SOKABE ◽  
Ken SAITO
1980 ◽  
Vol 239 (2) ◽  
pp. H206-H211
Author(s):  
M. R. Bresnahan ◽  
P. Hatzinikolaou ◽  
H. R. Brunner ◽  
H. Gavras

To clarify further the action of acute administration of L-tyrosine in lowering blood pressure, L-tyrosine ethylester was infused intravenously into awake [deoxycorticosterone acetate (DOCA)-salt] hypertensive rats, two-kidney Goldblatt hypertensive rats, and normotensive rats. The effects of tyrosine were measured on arterial pressure, heart rate, plasma catecholamine levels, and plasma renin activity. Blood pressure and heart rate were lowered in all groups despite significant elevation of plasma dopamine in all groups and epinephrine in the hypertensive groups, norepinephrine did not rise significantly, and plasma renin activity was always found to be within the ranges expected for each model. It was concluded that tyrosine produced the progressive decline in blood pressure and heart rate by bringing about a sustained state of parasympathetic dominance, as effective sympathetic compensation did not occcur. This could be attributed to increased alpha-adrenergic activity in certain sites in brain secondary to increased catecholaminergic activity in these areas.


1983 ◽  
Vol 244 (1) ◽  
pp. R74-R77 ◽  
Author(s):  
J. Schwartz ◽  
I. A. Reid

The role of vasopressin in the regulation of blood pressure during water deprivation was assessed in conscious dogs with two antagonists of the vasoconstrictor activity of vasopressin. In water-replete dogs, vasopressin blockade caused no significant changes in mean arterial pressure, heart rate, plasma renin activity (PRA), or plasma corticosteroid concentration. In the same dogs following 48-h water deprivation, vasopressin blockade increased heart rate from 85 +/- 6 to 134 +/- 15 beats/min (P less than 0.0001), increased cardiac output from 2.0 +/- 0.1 to 3.1 +/- 0.1 1/min (P less than 0.005), and decreased total peripheral resistance from 46.6 +/- 3.1 to 26.9 +/- 3.1 U (P less than 0.001). Plasma renin activity increased from 12.4 +/- 2.2 to 25.9 +/- 3.4 ng ANG I X ml-1 X 3 h-1 (P less than 0.0001) and plasma corticosteroid concentration increased from 3.2 +/- 0.7 to 4.9 +/- 1.2 micrograms/dl (P less than 0.05). Mean arterial pressure did not change significantly. When the same dogs were again deprived of water and pretreated with the beta-adrenoceptor antagonist propranolol, the heart rate and PRA responses to the antagonists were attenuated and mean arterial pressure decreased from 103 +/- 2 to 91 +/- 3 mmHg (P less than 0.001). These data demonstrate that vasopressin plays an important role in blood pressure regulation during water deprivation in conscious dogs.


1981 ◽  
Vol 60 (4) ◽  
pp. 399-404 ◽  
Author(s):  
C. J. Mathias ◽  
H. L. Frankel ◽  
I. B. Davies ◽  
V. H. T. James ◽  
W. S. Peart

1. The effect of endogenous sympathetic stimulation (induced by urinary bladder stimulation) and intravenous infusion of noradrenaline and isoprenaline on blood pressure, heart rate and levels of plasma renin activity and plasma aldosterone were studied in six tetraplegic patients. Data from infusion studies were compared with data from six normal subjects studied in an identical manner. 2. Bladder stimulation in the tetraplegic patients caused a marked rise in blood pressure and fall in heart rate, but no change in plasma renin activity or plasma aldosterone. 3. Noradrenaline infusion resulted in an enhanced pressor response in the tetraplegic patients when compared with the normal subjects. Heart rate fell in both groups. Plasma renin activity and plasma aldosterone did not change in either group. 4. Isoprenaline infusion caused a fall in both systolic and diastolic blood pressure in the tetraplegic patients, unlike the normal subjects in whom there was a rise in systolic and a fall in diastolic blood pressure. Heart rate and plasma renin activity rose in both groups. Plasma aldosterone did not change in either group. 5. We conclude that in tetraplegic patients neither endogenous sympathetic stimulation by bladder stimulation nor infusion of noradrenaline raises plasma renin activity. Isoprenaline increases plasma renin activity to the same extent as in normal subjects. Renin release mechanisms in tetraplegic patients therefore do not appear to be hypersensitive to catecholamines. Plasma aldosterone is not influenced by any of the stimuli.


1988 ◽  
Vol 75 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Jan Staessen ◽  
Roberto Fiocchi ◽  
Roger Bouillon ◽  
Robert Fagard ◽  
Peter Hespel ◽  
...  

1. Physical effort involves, along with an increase in the plasma concentration of β-endorphin, profound adaptations of the circulation and the endocrine system. The effects of opioid antagonism on the responses of blood pressure, heart rate and several hormones to exercise were therefore studied in 10 normal men. They exercised in the supine position up to 33% and 66% of their maximal exercise capacity and received in a randomized double-blind cross-over protocol, either saline or naloxone (10 mg intravenously, followed by a continuous infusion of 10 mg/h). 2. Intra-arterial pressure and heart rate were continuously monitored, but were not affected by naloxone. 3. At rest, opioid antagonism produced a rise in plasma renin activity and in plasma adrenocorticotropin, Cortisol and aldosterone, but only the stimulation of the two adrenocortical hormones differed significantly from the control experiments; at rest naloxone also prevented the fall in plasma adrenaline, which occurred with saline infusion. Furthermore, the exercise-induced rises in plasma angiotensin II, aldosterone, Cortisol, noradrenaline and adrenaline were higher on naloxone than on saline, while a similar tendency was also present for the increases with exercise in plasma renin activity and plasma adrenocorticotropin. Neither at rest nor during exercise did opioid antagonism alter plasma lactate and glucose and serum insulin and growth hormone. 4. In conclusion, (1) endogenous opioids are not involved in the responses of blood pressure and heart rate to supine exercise; (2) at rest and during exercise, the endogenous opioids inhibit the secretion of adrenocorticotropin, aldosterone, Cortisol, noradrenaline and adrenaline; (3) they also inhibit the plasma renin-angiotensin II system indirectly via the catecholamines.


1976 ◽  
Vol 41 (3) ◽  
pp. 323-327 ◽  
Author(s):  
K. J. Kosunen ◽  
A. J. Pakarinen ◽  
K. Kuoppasalmi ◽  
H. Adlercreutz

Plasma renin activity (PRA), angiotensin II, and aldosterone levels, arterial blood pressure, and heart rate of six male students were investigated during and after heat stress in a sauna bath. Increased PRA, angiotensin II, and aldosterone levels were found both during and after sauna. The greatest mean increases in PRA (94.9 +/- 10.4% SE, P less than 0.005) and angiotensin II (196 +/- 54.7% SE, P less than 0.02) were observed at the end of the heat stress (at 20 min), and that in plasma aldosterone (505 +/- 209% SE, P less than 0.02) 30 min after the sauna. The heart rate roughly doubled during the heat stress and there was a transient increase followed by a decrease in systolic blood pressure and a decrease in diastolic blood pressure. This study demonstrates that intense heat stress can cause remarkable changes in the three main components of the renin-angiotensin-aldosterone system.


1992 ◽  
Vol 82 (4) ◽  
pp. 389-395 ◽  
Author(s):  
C. Stonier ◽  
J. Bennett ◽  
E. A. Messenger ◽  
G. M. Aber

1. The effect of oestradiol alone and in combination with indomethacin on blood pressure, erythrocyte cation concentration and Na+−K+ flux has been studied in adult female normotensive and spontaneously hypertensive rats. 2. Oestradiol alone resulted in a significant decrease in blood pressure in spontaneously hypertensive rats (from 165.3 ± 3.9 to 146.4 ± 2.7 mmHg, P < 0.001), whereas it induced a significant increase in normotensive rats (from 111.8 ± 1.8 to 124.1 ± 3.6 mmHg, P < 0.001). When indomethacin and oestradiol were administered simultaneously or when indomethacin was given alone, no change in blood pressure occurred in spontaneously hypertensive rats (158.6 ± 6.9 and 159.8 ± 6.2 mmHg, respectively). 3. The fall in blood pressure induced by oestradiol in spontaneously hypertensive rats was associated with significant reductions in erythrocyte K+ concentration (from 127.4 ± 1.2 to 116.9 ± 1.7 mmol/l of cells, P < 0.001), in erythrocyte Na+ concentration (from 14.3 ± 0.8 to 13.0 ± 0.6 mmol/l of cells, P < 0.02), in ouabain-sensitive erythrocyte Na+ flux (from 17.8 ± 0.3 to 16.0 ± 0.4 mmol h−1 (1 of cells)−1, P < 0.01) and in ouabain-sensitive erythrocyte K+ flux (from 11.4 ± 0.2 to 10.4 ± 0.2 mmol h−1 (1 of cells)−1, P < 0.01). No change in blood pressure, erythrocyte cation concentration or Na+−K+ flux occurred when oestradiol and indomethacin were given together or when indomethacin was administered alone. 4. The hypertensive influence of oestradiol in normotensive rats was unaccompanied by any changes in erythrocyte K+ concentration, erythrocyte Na+ concentration and total, ouabain-sensitive and ouabain-resistant Na+−K+ flux. 5. The divergent changes in blood pressure noted in the two strains occurred despite comparable changes in plasma renin activity after oestradiol, with significant increases in plasma renin activity in normotensive rats (from 16.4 ± 4.2 to 28.4 ± 6.6 ng of angiotensin I h−1 ml−1, P < 0.05) and in spontaneously hypertensive rats (from 28.3 ± 2.7 to 39.5 ± 5.7 ng of angiotensin I h−1 ml−1, P < 0.01). The plasma renin activity in spontaneously hypertensive rats receiving oestradiol or indomethacin and oestradiol were similar with values of 39.5 ± 5.7 and 40.6 ± 5.7 ng of angiotensin I h−1 ml−1, respectively, but were significantly higher than that seen in control animals (28.3 ± 2.7 ng of angiotensin I h−1 ml−1, P < 0.01). Similarly, indomethacin alone induced a significant increase in plasma renin activity in spontaneously hypertensive rats to 35.8 ± 7.6 ng of angiotensin I h−1 ml−1 (P < 0.05). 6. The contrasting effects of oestradiol on blood pressure in the two rat strains occurred without any change in packed cell volume. Likewise, the changes in blood pressure in spontaneously hypertensive rats with either oestradiol alone or in combination with indomethacin occurred without any change in packed cell volume, although indomethacin alone resulted in a significant reduction in packed cell volume (from 30.9 ± 1.6 to 26.8 ± 2.0, P < 0.01). 7. The results suggest that the hypotensive action of oestradiol in spontaneously hypertensive rats might be mediated through its influence on erythrocyte cation concentration and/or the modulation of Na+−K+ flux either directly or via the action of prostanoids.


Sign in / Sign up

Export Citation Format

Share Document