A model of osmotic and hydrostatic pressure effects on volume absorption in the proximal tubule

1987 ◽  
Vol 253 (3) ◽  
pp. F563-F575
Author(s):  
J. C. Williams ◽  
J. A. Schafer

A computer model of the proximal tubule of the rabbit is described in which the tubule is treated as a single cylindrical barrier to the flow of solute and water between lumen and bath, and volume absorption is assumed to be driven exclusively by hydrostatic and osmotic pressure differences across this barrier. The model mimics the function of the tubule in two in vitro preparations: in simulations of the isolated tubule perfused under oil, the model correctly describes the solute concentration gradients that exist between the perfusate and absorbate and predicts differences in solute concentrations among absorbate droplets on the same tubule if luminal concentration becomes limiting. This prediction was tested experimentally with glucose and found to be correct. In simulations of the tubule perfused in an aqueous bath, the role of transmural hydrostatic pressure was explored; it is predicted that, at normal rates of in vitro perfusion (approximately 10 nl/min), increases in pressure have very little effect on volume absorption but can greatly alter the osmotic differences present across the wall of the tubule, especially with high values of osmotic water permeability. At high rates of perfusion, the ability of the tubule to produce a lumen hypotonic to the bath is reduced, but the direct effects of pressure on volume absorption become more apparent, resulting in relatively little effect of perfusion rate on volume absorption if the osmotic water permeability is sufficiently high. A similar relationship was seen experimentally. In all, this simple model provides a good prediction of function in isolated perfused tubules without any assumptions of hypertonic compartments within the epithelium.

1983 ◽  
Vol 245 (3) ◽  
pp. F279-F294 ◽  
Author(s):  
C. A. Berry

The route of water transport in the proximal tubule could be either transjunctional or transcellular. A transjunctional route is supported by data showing high osmotic-to-diffusive water permeability ratios, the possible correlation of junctional leakiness to ions and nonelectrolytes with water permeability, and solvent drag of nonelectrolytes and ions. These data, however, are not convincing. A transcellular route of water transport is supported by data showing that the osmotic water permeability (Pf) for apical and/or basolateral cell membranes is sufficiently high to account for the transepithelial Pf, making a tentative conclusion for a transcellular route of water transport possible. In addition, measurements of Pf have yielded insights into the mechanism of solute-solvent coupling. Pf has been reported to be mostly between 0.1 and 0.3 cm/s. In the rabbit proximal straight and the Necturus proximal convoluted tubule, in which water transport rates are low, this range of Pf will account for volume absorption with only small osmotic gradients (less than 6 mosmol). Higher osmotic gradients are required in the rat and possibly the rabbit proximal convoluted tubule, where water transport rates are higher. Solute-solvent coupling in all species is probably due to both luminal hypotonicity and lateral intercellular space hypertonicity. These two processes are directly linked. Mass balance requires that generation of luminal hypotonicity also generates a hypertonic absorbate and, thus, some degree of lateral intercellular space hypertonicity. It is likely that, in the rabbit at least, effective osmotic pressure gradients due to differences in solute reflection coefficients play little role in solute-solvent coupling.


1996 ◽  
Vol 271 (4) ◽  
pp. F871-F876 ◽  
Author(s):  
R. Quigley ◽  
M. Baum

The mammalian proximal tubule reabsorbs the bulk of the glomerular filtrate in a nearly isosmotic fashion due to the high osmotic water permeability (Pf) of this segment. Although the characteristics of proximal tubule water transport have been studied in the adult proximal tubule, little is known about the neonatal segment. The present study directly measured the Pf and diffusional water permeability (PDW) of neonatal (10 +/- 2 day old) and adult rabbit juxtamedullary proximal convoluted tubules (PCT) using in vitro microperfusion. The Pf of neonatal juxtamedullary PCT was greater than the Pf of adult juxtamedullary PCT. In contrast, the PDW was not different between the two groups. The Pf and PDW values of both neonatal and adult tubules were inhibited to the same degree by p-chloromercuribenzene sulfonate and had identical activation energies. The transepithelial reflection coefficients of NaCl and NaHCO3 were also found to be similar in both the neonatal and adult proximal tubules. Thus neonatal and adult juxtamedullary PCT have many characteristics of water transport that are identical; however, neonatal Pf is three to five times that of the adult value. This difference in Pf with identical PDW values may give an insight into the transepithelial pathway for water movement in the neonatal tubule.


1992 ◽  
Vol 263 (3) ◽  
pp. F417-F426 ◽  
Author(s):  
C. L. Chou ◽  
M. A. Knepper

The thin limb segments of the long loop of Henle are thought to play important roles in the urinary concentrating mechanism. In this study, we present new approaches to the identification, dissection, and in vitro perfusion of individual thin limb segments from all levels of the chinchilla renal medulla, including the deepest portions of the papilla. We have applied these techniques to the investigation of the osmotic water permeability along the chinchilla long loop of Henle. The results demonstrate that the osmotic water permeability of the thin descending limb is not uniformly high along its length, as previously thought, but that the distal 20% of the long-loop descending limb has a very low water permeability (approximately 50 microns/s). The transition to the low water permeability region of the thin descending limb is accompanied by a relatively abrupt change in morphology (increased cellularity and decreased diameter) that is readily perceptible in the perfused segments and even in the dissection dish. In contrast, the upper part of the chinchilla long-loop thin descending limb had an extremely high osmotic water permeability (greater than 2,000 microns/s) as observed in other species. Thin ascending limbs from deep in the inner medulla had water permeabilities that were indistinguishable from zero, as previously found in thin ascending limbs from near the inner-outer medullary junction. The presence of a low-water-permeability portion of the long-loop thin descending limb in chinchilla may have important implications with regard to the inner medullary concentrating process. A relatively low osmotic water permeability (397 microns/s) was also found in the deep inner medullary portion of the thin descending limb from the rat.


1991 ◽  
Vol 261 (6) ◽  
pp. F951-F956 ◽  
Author(s):  
R. Oishi ◽  
H. Nonoguchi ◽  
K. Tomita ◽  
F. Marumo

Endothelin causes diuresis despite an accompanying decrease in glomerular filtration rate and renal plasma flow. Binding sites for endothelin are located not only in glomeruli but also in the inner medulla, possibly in inner medullary collecting ducts (IMCD). To determine whether endothelin has a direct tubular effect, effects of endothelin on water and urea transport were investigated using isolated microperfusion of rat IMCD segments in vitro. Endothelin, at 10(-10) and 10(-8) M, reversibly inhibited 10(-11) M arginine vasopressin (AVP)-stimulated osmotic water permeability (Pf) by 18 and 24%, respectively. Endothelin (10(-8) M) also inhibited Pf by 23% in the presence of a much higher dose of AVP (10(-9) M), whereas endothelin had no effect on Pf in the absence of AVP. On the other hand, 10(-8) M endothelin did not inhibit Pf stimulated by 10(-3) M dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP). Endothelin had no inhibitory effect on AVP-stimulated urea permeability. These data suggest that endothelin can cause diuresis by inhibiting AVP-stimulated Pf in IMCD and that the site of action is previous to cAMP generation.


1984 ◽  
Vol 247 (5) ◽  
pp. F822-F826 ◽  
Author(s):  
F. Y. Liu ◽  
M. G. Cogan ◽  
F. C. Rector

To assess whether proximal luminal fluid becomes hypotonic with respect to plasma, free-flow micropuncture measurements were made sequentially from the end-proximal tubule to Bowman's space in 10 tubules of hydropenic Munich-Wistar rats. Osmolality in Bowman's space was 2.8 +/- 0.3 mosmol less than in plasma. Tubular fluid osmolality fell along the tubule and by the end-proximal tubule was 7.5 +/- 0.7 mosmol/kg less than in plasma or 4.7 mosmol/kg less than in Bowman's space. Since luminal fluid became hypotonic, the reabsorbate was hypertonic. The transepithelial osmotic water permeability (Pf) was calculated using simultaneously measured water reabsorption rates. The osmotic gradient responsible for water reabsorption was assumed to be either lumen-to-reabsorbate or lumen-to-peritubular plasma, with a reflection coefficient for sodium chloride of 0.7-1.0. The Pf was then estimated to be between 0.2 and 2.0 cm/s in the first millimeter of tubule and to have fallen to 0.1-0.2 cm/s by the end of the tubule. In conclusion, luminal hypotonicity develops in the rat proximal convoluted tubule and must be considered as part of the osmotic driving force for water reabsorption.


1991 ◽  
Vol 260 (5) ◽  
pp. F710-F716 ◽  
Author(s):  
E. Siga ◽  
M. F. Horster

Urinary osmotic concentration capacity during renal ontogeny is subject to changes of medullary cytoarchitecture and of segmental epithelial transport characteristics. Osmotic equilibrium between interstitial and tubular fluid of the terminal nephron segment in response to vasopressin is an absolute essential of maximal urinary osmotic concentration. The regulation of osmotic water permeability (Pf) in this terminal epithelial segment during ontogenetic differentiation has not been documented. The inner medullary collecting duct (IMCD), the terminal 40% of total segmental length, was dissected at two stages of postnatal ontogenetic differentiation from immature (days 7-15) and from mature (days 33-37) rat kidneys and perfused in vitro. Pf (micron/s) was measured (bath hyperosmotic) in the absence and presence of arginine vasopressin (AVP, 230 pM). Basal Pf was 32.3 +/- 4.03 (n = 26) in the immature IMCD (IMCDi) and 111.5 +/- 20.6 (n = 15) in the mature segment (IMCDm). AVP increased Pf in IMCDi from 46.4 +/- 10.5 to 102 +/- 25.7 micron/s, whereas in IMCDm the AVP-dependent change of Pf was from 104.2 +/- 41.2 to 693 +/- 176 micron/s. AVP (2,300 pM) did not further increase Pf in IMCDi. Forskolin (50 microM) changed Pf in IMCDi from 34.9 +/- 6.3 to 104.1 +/- 16 micron/s; the corresponding change in IMCDm was from 150 +/- 32 to 985.8 +/- 133 micron/s. An analogue of adenosine 3',5'-cyclic monophosphate (cAMP; 10(-3) M) increased Pf in IMCDi from 35.5 +/- 11.4 to 138.5 +/- 32.6 and in IMCDm from 79.6 +/- 32.3 to 702.2 +/- 283 micron/s.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (1) ◽  
pp. F53-F63 ◽  
Author(s):  
B. Flamion ◽  
K. R. Spring ◽  
M. Abramow

Prolonged fluid restriction in rats is accompanied by functional modifications of the terminal part of the inner medullary collecting duct (IMCD) revealed by a sustained increase in arginine vasopressin (AVP)-independent transepithelial osmotic water permeability (PTE) in vitro. The cellular basis of this adaptation was explored in isolated and perfused terminal IMCDs of Sprague-Dawley rats using video and fluorescence microscopy. Basolateral membrane osmotic water permeability (Posm), transcellular Posm, and PTE were measured in quick sequence in every tubule. They were expressed per unit area of basolateral membrane corrected for infoldings, based on previous stereological studies and assuming no major change in membrane surface area between hydrated and dehydrated animals. Compared with IMCDs of rats with a high water intake, IMCDs of rats deprived of fluid for 36 h displayed a significantly higher basal PTE (24.9 +/- 5.1 vs. 6.1 +/- 0.6 microns/s), a similar basolateral Posm, and a higher transcellular Posm, implying a higher permeability of the apical membrane, despite the absence of exogenous AVP. However, when IMCDs of thirsted rats were exposed to AVP in vitro, their transcellular Posm (36.0 +/- 2.4 microns/s) was significantly smaller than their PTE determined simultaneously (51.8 +/- 7.1 microns/s), suggesting that part of the water flow may follow a paracellular route. A change in paracellular pathways was supported by higher apparent permeabilities to [14C]sucrose (0.85 +/- 0.27 vs. 0.28 +/- 0.04 x 10(-5) cm/s) and to [methoxy-3H]inulin (0.25 +/- 0.04 vs. 0.14 +/- 0.03 x 10(-5) cm/s) in IMCDs of thirsted rats. The nonelectrolyte permeabilities were affected neither by AVP nor by urea-rich bathing solutions. We conclude that in vivo factors related to dehydration produce a conditioning effect on terminal IMCD, which includes stabilization of the apical membrane in a state of high Posm and opening up of paracellular pathways revealed by a higher permeability to water and nonelectrolytes. The role of these adaptive phenomena remains unclear but may pertain to the sudden transitions between antidiuresis and diuresis.


1981 ◽  
Vol 77 (5) ◽  
pp. 549-570 ◽  
Author(s):  
T C Terwilliger ◽  
A K Solomon

The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.


Sign in / Sign up

Export Citation Format

Share Document