Immunocytochemical localization of Na+ channels in rat kidney medulla

1989 ◽  
Vol 256 (2) ◽  
pp. F366-F369 ◽  
Author(s):  
D. Brown ◽  
E. J. Sorscher ◽  
D. A. Ausiello ◽  
D. J. Benos

Amiloride-sensitive Na+ channels were localized in semithin frozen sections of rat renal medullary collecting ducts, using polyclonal antibodies directed against purified bovine kidney Na+ channel protein. The apical plasma membrane of collecting duct principal cells was heavily stained by indirect immunofluorescence, whereas intercalated cells were negative. Basolateral plasma membranes of both cell types were unstained, as were subapical vesicles in the cytoplasm of these cells. In the thick ascending limb of Henle, some scattered granular fluorescence was seen in the cytoplasm and close to the apical pole of epithelial cells, suggesting the presence of antigenic sites associated with some membrane domains in these cells. No staining was detected in thin limbs of Henle, or in proximal tubules in the outer medulla. These results show that amiloride-sensitive sodium channels are located predominantly on the apical plasma membrane of medullary collecting duct principal cells, the cells that are involved in Na+ homeostasis in this region of the kidney.

2001 ◽  
Vol 280 (6) ◽  
pp. F1093-F1106 ◽  
Author(s):  
Henrik Hager ◽  
Tae-Hwan Kwon ◽  
Anna K. Vinnikova ◽  
Shyama Masilamani ◽  
Heddwen L. Brooks ◽  
...  

Epithelial sodium channel (ENaC) subunit (α, β, and γ) mRNA and protein have been localized to the principal cells of the connecting tubule (CNT), cortical collecting duct (CCD), and outer medullary collecting duct (OMCD) in rat kidney. However, the subcellular localization of ENaC subunits in the principal cells of these cells is undefined. The cellular and subcellular localization of ENaC subunits in rat kidney was therefore examined. Immunocytochemistry demonstrated the presence of all three subunits in principal cells of the CNT, CCD, OMCD, and IMCD. In cortex and outer medulla, confocal microscopy demonstrated a difference in the subcellular localization of subunits. α-ENaC was localized mainly in a zone in the apical domains, whereas β- and γ-ENaC were found throughout the cytoplasm. Immunoelectron microscopy confirmed the presence of ENaC subunits in both the apical plasma membrane and intracellular vesicles. In contrast to the labeling pattern seen in cortex, α-ENaC labeling in IMCD cells was distributed throughout the cytoplasm. In the urothelium covering pelvis, ureters, and bladder, immunoperoxidase and confocal microscopy revealed differences the presence of all ENaC subunits. As seen in CCD, α-ENaC was present in a narrow zone near the apical plasma membrane, whereas β- and γ-ENaC were dispersed throughout the cytoplasm. In conclusion, all three subunits of ENaC are expressed throughout the collecting duct (CD), including the IMCD as well as in the urothelium. The intracellular vesicular pool in CD principal cells suggests ENaC trafficking as a potential mechanism for the regulation of Na+ reabsorption.


2002 ◽  
Vol 283 (5) ◽  
pp. F1160-F1166 ◽  
Author(s):  
Stephen Shaw ◽  
David Marples

AVP increases the osmotic water permeability of renal collecting ducts by inducing the translocation of specific aquaporin-2 (AQP2) water channels from cytoplasmic vesicles to the apical plasma membrane of the principal cells. Here, we report a novel inner medullary tubule suspension for the study of this phenomenon that overcomes some of the drawbacks faced by present techniques; both primary cultures of inner medullary collecting duct cells and cell lines expressing AQP2 show aberrant trafficking and/or signaling pathways. The tubule suspensions were prepared by proteolytic digestion of inner medullas dissected from freshly isolated rat kidneys. After drug treatment, cellular distribution of AQP2 was determined by membrane fractionation and Western blotting or by immunocytochemistry. Treatment of suspensions with 1 nM AVP caused redistribution of AQP2 to the apical plasma membrane of the principal cells, a process inhibited by microtubule disruption or PKA inhibition. We conclude that this method provides a valuable new approach to the study of the cellular mechanisms involved in the response of the collecting duct to AVP.


2007 ◽  
Vol 293 (4) ◽  
pp. F1308-F1313 ◽  
Author(s):  
Mitsi A. Blount ◽  
Janet D. Klein ◽  
Christopher F. Martin ◽  
Dmitry Tchapyjnikov ◽  
Jeff M. Sands

UT-A1 is regulated by vasopressin and is localized to the apical membrane and intracellular compartment of inner medullary collecting duct (IMCD) cells. UT-A3 is also expressed in the IMCD and is regulated by forskolin in heterologous systems. The goal of the present study is to investigate mechanisms by which vasopressin regulates UT-A3 in rat IMCD. In fresh suspensions of rat IMCD, forskolin increases the phosphorylation of UT-A3, similar to UT-A1. Biotinylation studies indicate that UT-A3 is located in the plasma membrane. Forskolin treatment increases the abundance of UT-A3 in the plasma membrane similar to UT-A1. However, these two transporters do not form a complex through a protein-protein interaction, suggesting that transporter function is unique to each protein. While immunohistochemistry localized UT-A3 to the basal and lateral membranes, a majority of the staining was cytosolic. Immunohistochemistry of vasopressin-treated rat kidney sections also localized UT-A3 primarily to the cytosol with basal and lateral membrane staining but also showed some apical membrane staining in some IMCD cells. This suggests that under normal conditions, UT-A3 functions as the basolateral transporter but in a high cAMP environment, the transporter may move from the cytosol to all plasma membranes to increase urea flux in the IMCD. In summary, this study confirms that UT-A3 is located in the inner medullary tip where it is expressed in the basolateral membrane, shows that UT-A3 is a phosphoprotein in rat IMCD that can be trafficked to the plasma membrane independent of UT-A1, and suggests that vasopressin may induce UT-A3 expression in the apical plasma membrane of IMCD.


1996 ◽  
Vol 7 (12) ◽  
pp. 2533-2542 ◽  
Author(s):  
S M Ginns ◽  
M A Knepper ◽  
C A Ecelbarger ◽  
J Terris ◽  
X He ◽  
...  

Two bumetanide-sensitive ion cotransporters that carry Na+, K+, and Cl- in a coupled fashion have been identified. One type, the "absorptive" isoform, carries these ions across the apical plasma membrane of the thick ascending limb of Henle's loop. Another isoform, the "secretory" cotransporter, has been identified in a number of epithelial tissues by physiological means, but its sites of expression in the kidney have not been fully characterized. Complementary DNA believed to code for the secretory isoform (called "BSC2" or "NKCC1") have recently been cloned. This study used a specific affinity-purified antipeptide antibody to this protein for immunolocalization in the rat kidney. Immunoblot studies using this antibody show abundant immunoreactivity against bands of 140-190 and 120 kd in the parotid gland, colon, and stomach, sites where the secretory form of the cotransporter has been identified by physiological techniques. This distribution supports the hypothesis that this isoform represents the secretory form of the cotransporter. Studies in the kidney revealed that the same bands are associated with membrane fractions chiefly in the outer medulla. Immunolocalizations show that immunoreactivity is selectively and intensely localized to the basolateral plasma membrane of a subfraction of outer medullary collecting duct cells. An independently produced monoclonal antibody (T4) specific for Na-K-Cl cotransporter displays the same localization. Dual localizations of cotransporter antibody with respect to antibody specific for principal cells (aquaporin-2) and intercalated cells (band 3 and H(+)-ATPase) show that cotransporter immunoreactivity is localized to alpha-intercalated cells of the outer medullary collecting duct in the rat. This distinctive localization suggests that the secretory form of the cotransporter may play a role in renal NH4+ and/or acid secretion by this cell type.


2003 ◽  
Vol 284 (4) ◽  
pp. F701-F717 ◽  
Author(s):  
Birgitte Mønster Christensen ◽  
Weidong Wang ◽  
Jørgen Frøkiær ◽  
Søren Nielsen

The purpose of the present study was to examine whether there is axial heterogeneity in the basolateral plasma membrane (BLM) localization of AQP2 and whether altered vasopressin action or medullary tonicity affects the BLM localization of AQP2. Immunocytochemistry and immunoelectron microscopy revealed AQP2 labeling of the BLM in connecting tubule (CNT) cells and inner medullary collecting duct (IMCD) principal cells in normal rats and vasopressin-deficient Brattleboro rats. In contrast there was little basolateral AQP2 labeling in cortical (CCD) and outer medullary collecting duct principal cells. Short-term desamino-Cys1, D-Arg8 vasopressin (dDAVP) treatment (2 h) of Brattleboro rats caused no increase in AQP2 labeling of the BLM. In contrast, long-term dDAVP treatment (6 days) of Brattleboro rats caused an increased BLM labeling in CNT, CCD, and IMCD. Treatment of normal rats with V2-receptor antagonist for 60 min caused retrieval of AQP2 from the apical plasma membrane. Moreover, AQP2 labeling of the BLM was unchanged in CNT and IMCD but increased in CCD. In conclusion, there is an axial heterogeneity in the subcellular localization of AQP2 with prominent AQP2 labeling of the BLM in CNT and IMCD. There was no increase in AQP2 labeling of the BLM in response to short-term dDAVP. Moreover, acute V2-receptor antagonist treatment did not cause retrieval of AQP2 from the BLM. In contrast, long-term dDAVP treatment caused a major increase in AQP2 expression in the BLM in CCD.


2000 ◽  
Vol 278 (2) ◽  
pp. F327-F336 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Alexander Pushkin ◽  
Natalia Abuladze ◽  
Søren Nielsen ◽  
Ira Kurtz

In the present study, we produced a rabbit peptide-derived polyclonal COOH-terminal antibody that selectively recognizes NBC3, to determine the cellular and subcellular localization of NBC3 in rat kidney, using immunocytochemistry and immunoelectron microscopy. Immunocytochemistry with cryostat sections and semithin cryosections revealed specific staining of intercalated cells (ICs) in the connecting tubule and in cortical, outer medullary, and initial inner medullary collecting ducts. In the connecting tubule and in the cortical and medullary collecting duct, the labeling was associated with both type A and type B ICs. In type A ICs, labeling was confined to the apical and subapical domains, whereas in type B ICs, basal domains were exclusively labeled. In contrast, collecting duct principal cells were consistently unlabeled, and this was confirmed using anti-aquaporin-2 antibodies, which labeled principal cells in parallel semithin cryosections. Glomeruli, proximal tubules, descending thin limbs, ascending thin limbs, thick ascending limbs, distal convoluted tubules, and vascular structures were unlabeled. For immunoelectron microscopy, tissue samples were freeze-substituted, and immunolabeling was performed on ultrathin Lowicryl HM20 sections. Immunoelectron microscopy demonstrated that NBC3 labeling was very abundant in the apical plasma membrane, in intracellular vesicles, and in tubulocisternal profiles in the subapical domains of type A ICs. In type B ICs, NBC3 was mainly present in the basolateral plasma membrane. Immunolabeling controls using peptide-absorbed antibody were consistently negative. In conclusion, NBC3 is highly abundant in the apical plasma membrane of type A ICs and in the basolateral plasma membrane of type B ICs. This suggests that NBC3 plays an important role in modulating bicarbonate transport in the connecting tubule and collecting duct.


1998 ◽  
Vol 275 (5) ◽  
pp. F752-F760 ◽  
Author(s):  
Takeaki Inoue ◽  
Søren Nielsen ◽  
Beatrice Mandon ◽  
James Terris ◽  
Bellamkonda K. Kishore ◽  
...  

Vesicle targeting proteins (“SNAREs”) have been proposed to direct vasopressin-induced trafficking of aquaporin-2 water channels in kidney collecting ducts. A newly identified SNARE protein, SNAP-23, is proposed to mediate vesicle targeting to the plasma membrane in diverse tissues. The current studies were done to determine whether SNAP-23 is expressed in collecting ducts with an intracellular distribution compatible with a role in aquaporin-2 trafficking. RT-PCR demonstrated SNAP-23 mRNA in microdissected collecting ducts and other tubular segments including the proximal tubule and thick ascending limb. Immunoblotting using a polyclonal antibody raised against a COOH-terminal peptide revealed a solitary band at an apparent molecular mass of 30 kDa in renal medullary membrane fractions and inner medullary collecting duct suspensions. Differential centrifugation revealed that SNAP-23 is present in membrane fractions including the low-density fraction enriched in intracellular vesicles. Immunocytochemistry revealed SNAP-23 labeling at both the apex and the cytoplasm of collecting duct principal cells. Immunoblotting of intracellular vesicles immunoisolated using an aquaporin-2 antibody revealed the presence of both SNAP-23 and synaptobrevin-2 (VAMP-2) in aquaporin-2-bearing vesicles. We conclude that SNAP-23 is strongly expressed in collecting duct principal cells, consistent with a role in vasopressin-regulated trafficking of aquaporin-2. However, localization of SNAP-23 in both intracytoplasmic vesicles and plasma membranes suggests a function different from that originally proposed for SNAP-25 in synaptic vesicle targeting.


2000 ◽  
Vol 278 (1) ◽  
pp. F29-F42 ◽  
Author(s):  
Birgitte Mønster Christensen ◽  
Marina Zelenina ◽  
Anita Aperia ◽  
Søren Nielsen

Phosphorylation of Ser256, in a PKA consensus site, in AQP2 (p-AQP2) appears to be critically involved in the vasopressin-induced trafficking of AQP2. In the present study, affinity-purified antibodies that selectively recognize AQP2 phosphorylated at Ser256 were developed. These antibodies were used to determine 1) the subcellular localization of p-AQP2 in rat kidney and 2) changes in distribution and/or levels of p-AQP2 in response to [desamino-Cys1,d-Arg8]vasopressin (DDAVP) treatment or V2-receptor blockade. Immunoelectron microscopy revealed that p-AQP2 was localized in both the apical plasma membrane and in intracellular vesicles of collecting duct principal cells. Treatment of rats with V2-receptor antagonist for 30 min resulted in almost complete disappearance of p-AQP2 labeling of the apical plasma membrane with only marginal labeling of intracellular vesicles remaining. Immunoblotting confirmed a marked decrease in p-AQP2 levels. In control Brattleboro rats (BB), lacking vasopressin secretion, p-AQP2 labeling was almost exclusively present in intracellular vesicles. Treatment of BB rats with DDAVP for 2 h induced a 10-fold increase in p-AQP2 labeling of the apical plasma membrane. The overall abundance of p-AQP2, however, was not increased, as determined both by immunoelectron microscopy and immunoblotting. Consistent with this, 2 h of DDAVP treatment of normal rats also resulted in unchanged p-AQP2 levels. Thus the results demonstrate that AQP2 phosphorylated in Ser256 is present in the apical plasma membrane and in intracellular vesicles and that both the intracellular distribution/trafficking, as well as the abundance of p-AQP2, are regulated via V2 receptors by altering phosphorylation and/or dephosphorylation of Ser256in AQP2.


1986 ◽  
Vol 250 (1) ◽  
pp. F1-F15 ◽  
Author(s):  
K. M. Madsen ◽  
C. C. Tisher

The distal tubule, which includes the thick ascending limb (TAL), the macula densa, and the distal convoluted tubule (DCT), and the collecting duct are structurally heterogeneous, thus reflecting the functional heterogeneity that is also present. As the TAL ascends from medulla to cortex, the surface area of the apical plasma membrane increases while that of the basolateral membrane decreases. The structure of the DCT resembles that of the medullary TAL. An excellent correlation exists between structure, Na-K-ATPase activity, and NaCl reabsorptive capacity in the distal tubule. The collecting duct is subdivided into the initial collecting tubule (ICT), and cortical (CCD), outer medullary (OMCD), and inner medullary (IMCD) collecting ducts. Between the distal tubule and the collecting duct is a transition region termed the connecting segment or connecting tubule (CNT). Considerable structural heterogeneity exists along the collecting duct within the two major cell populations, the intercalated cells and the principal cells. In the CNT, the ICT, and the CCD, potassium loading and mineralocorticoids stimulate Na-K-ATPase activity and cause proliferation of the basolateral membrane of CNT cells and principal cells, thus identifying the cells responsible for mineralocorticoid-stimulated potassium secretion in these regions. Finally, at least two morphologically distinct populations of intercalated cells exist, types A and B. In the rat, type A predominates in the CNT and the OMCD and is believed to be responsible for H+ secretion, at least in the OMCD. Type B predominates in the CCD, where it may be involved in bicarbonate secretion.


1992 ◽  
Vol 119 (1) ◽  
pp. 111-122 ◽  
Author(s):  
I Sabolic ◽  
F Wuarin ◽  
L B Shi ◽  
A S Verkman ◽  
D A Ausiello ◽  
...  

Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity-purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of vasopressin-sensitive cells in the kidney collecting duct.


Sign in / Sign up

Export Citation Format

Share Document