Blockade of pressure natriuresis induced by inhibition of renal synthesis of nitric oxide in dogs

1992 ◽  
Vol 262 (5) ◽  
pp. F718-F722 ◽  
Author(s):  
M. G. Salom ◽  
V. Lahera ◽  
F. Miranda-Guardiola ◽  
J. C. Romero

To evaluate the participation of nitric oxide (NO) on pressure-induced natriuresis in pentobarbital-anesthetized dogs, renal perfusion pressure (RPP) was increased twice from 100 to 150 mmHg before and during the intrarenal administration of an NO-synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), while determining changes in glomerular filtration rate (GFR), renal blood flow (RBF), and urine sodium and water excretion. Before the inhibition of NO, the increase in RPP induced diuresis (5-fold) and natriuresis (4.2-fold) with no change in RBF or GFR. However, the intrarenal infusion of L-NAME (1 microgram.kg-1.min-1) blunted the diuretic and natriuretic responses without altering RBF or GFR. The infusion of the NO synthesis precursor L-arginine prevented the inhibitory effect that L-NAME exerted on the diuretic and natriuretic responses to the increase in RPP. These results indicate that the increase in RPP stimulates NO synthesis and suggest that NO might play an important role in the control of sodium and water excretion during acute changes in RPP.

1991 ◽  
Vol 260 (5) ◽  
pp. F643-F649 ◽  
Author(s):  
J. M. Gonzalez-Campoy ◽  
C. Long ◽  
D. Roberts ◽  
T. J. Berndt ◽  
J. C. Romero ◽  
...  

The present study tested the hypothesis that the presence of renal prostaglandin E2 (PGE2) is necessary for full natriuretic response to increased renal interstitial hydrostatic pressure (RIHP) during increased renal perfusion pressure (RPP). In control untreated pentobarbital-anesthetized dogs (n = 7), fractional excretion of sodium (FENa) was 1.17 +/- 0.48, 1.07 +/- 0.24, and 2.69 +/- 0.57% at RPP of 90, 122, and 148 mmHg, respectively. These changes in FENa were associated with effective renal blood flows (ERBF) of 1.43 +/- 0.20, 1.49 +/- 0.23, and 1.99 +/- 0.40 ml.min-1.g kidney wt-1, respectively. Similarly, glomerular filtration rate (GFR) was 0.53 +/- 0.10, 0.71 +/- 0.10, and 0.72 +/- 0.14 ml.min-1.g kidney wt-1, respectively. Treatment with indomethacin, a cyclooxygenase inhibitor, significantly lowered FENa to 0.45 +/- 0.13, 0.77 +/- 0.21, and 1.19 +/- 0.59% at RPP of 91, 121, and 146 mmHg, respectively. Additionally, indomethacin treatment lowered ERBF (0.51 +/- 0.15, 0.52 +/- 0.10, and 0.85 +/- 0.21 ml.min-1.g kidney wt-1) and GFR (0.28 +/- 0.09, 0.34 +/- 0.09, and 0.47 +/- 0.09 ml.min-1.g kidney wt-1) at low, middle, and high RPP, respectively. PGE2 replacement (n = 6) into renal artery at 0.01 microgram.min-1.kg body wt-1 returned FENa, ERBF, and GFR to control levels over the same range of RPP, whereas prostacyclin (PGI2) infusion (n = 7) at the same dose did not. RIHP was 4.2 +/- 1.2, 4.2 + 0.5, and 7.5 +/- 1.7 mmHg with increasing RPP in control untreated group and increased to similar levels with indomethacin treatment and during PGE2 or PGI2 replacement.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (5) ◽  
pp. R1676-R1682 ◽  
Author(s):  
María Isabel Madrid ◽  
Miguel García-Salom ◽  
Jerónimo Tornel ◽  
Marc De Gasparo ◽  
Francisco J. Fenoy

The present study examined the effect of an angiotensin II AT1 or AT2 receptor antagonist on the impairment of the pressure diuresis and natriuresis response produced by nitric oxide (NO) synthesis blockade. N ω-nitro-l-arginine methyl ester (l-NAME, 37 nmol ⋅ kg−1 ⋅ min−1) lowered renal blood flow and reduced the slopes of the pressure diuresis and natriuresis responses by 44 and 40%, respectively. Blockade of AT1 receptors with valsartan increased slightly sodium and water excretion at low renal perfusion pressure (RPP). Blockade of AT2 receptors with PD-123319 had no effect on renal function. The administration of valsartan or PD-123319 to rats given l-NAME had no effect on the renal vasocontriction induced by NO synthesis blockade. In addition, in rats givenl-NAME, valsartan elevated baseline excretory values at all RPP studied, but it had no effect on the sensitivity of the pressure diuresis and natriuresis response. However, the administration of PD-123319 tol-NAME-pretreated rats shifted the slopes of the pressure diuresis and natriuresis responses toward control values, indicating that the impairment produced by NO synthesis blockade on pressure diuresis is dependent on the activation of AT2 angiotensin receptors.


1987 ◽  
Vol 253 (3) ◽  
pp. F424-F431 ◽  
Author(s):  
R. V. Paul ◽  
K. A. Kirk ◽  
L. G. Navar

We examined the autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR) in the anesthetized dog during selective renal arterial infusion of two different synthetic atrial natriuretic factor (ANF) analogues. Rat atriopeptin II (5 X 10(-8) M in renal arterial blood) caused increases in sodium and water excretion but left RBF and GFR unchanged. A similar response was seen with rat 8-33 atrial natriuretic peptide (ANP) (10(-9) M), but a twofold higher dose of this peptide produced a transient increase in RBF and a sustained 16% increase in GFR. The normal pattern of RBF autoregulation in response to decreases in renal perfusion pressure was not altered by either peptide. GFR was also efficiently autoregulated during ANF infusion; however, there was a threefold increase in the slope of the relationship between sodium excretion and arterial pressure (pressure natriuresis) during 8-33 ANP infusion (control 1.11 +/- 0.39, 8-33 ANP 4.00 +/- 0.86 mu eq/mmHg, P less than 0.01). We conclude that ANF-induced diuresis can be sustained without detectable changes in either the autoregulation-responsive or autoregulation-independent components of renal vascular resistance. Factors other than GFR, which are highly responsive to renal perfusion pressure, are important in modulating the natriuresis caused by ANF. The augmentation of pressure natriuresis within the GFR autoregulatory range suggests an influence of ANF on the magnitude of arterial pressure-induced changes in tubular sodium reabsorption.


1994 ◽  
Vol 266 (6) ◽  
pp. R1730-R1735 ◽  
Author(s):  
A. R. Patel ◽  
J. P. Granger ◽  
K. A. Kirchner

L-Arginine normalizes pressure natriuresis in Dahl salt-sensitive (DS) rats. To determine the role of renal interstitial hydrostatic pressure (RIHP) in this phenomenon, we measured RIHP determined by servo-null during acute changes in renal perfusion pressure in anesthetized DS rats receiving L-arginine (300 mg.kg-1.day-1 ip) or vehicle for 3 wk. Dahl salt-resistant (DR) rats were controls. As observed previously, the slope of the pressure-natriuresis relationship was greater (P < 0.05) in L-arginine-treated DS rats than vehicle DS rats and not different from DR rats. The slope of the relationship between renal perfusion pressure and RIHP was greater (P < 0.05) in DR rats than vehicle DS rats. In L-arginine-treated DS rats the slope of this relationship was greater (P < 0.05) than that in vehicle DS rats and not different from DR rats. Removal of the renal capsule blunted the pressure-natriuresis relationship in L-arginine-treated DS rats but had no effect in vehicle DS rats. Thus L-arginine improves transmission of perfusion pressure into the renal interstitium in DS rats and may contribute to the improved pressure-natriuresis response.


2002 ◽  
Vol 282 (2) ◽  
pp. F238-F244 ◽  
Author(s):  
Akira Nishiyama ◽  
Shoji Kimura ◽  
Toshiki Fukui ◽  
Matlubur Rahman ◽  
Hirohito Yoneyama ◽  
...  

We examined responses of renal interstitial guanosine 3′,5′-cyclic monophosphate (cGMP) to changes in renal perfusion pressure (RPP) within and below the range of renal blood flow (RBF) autoregulation. A microdialysis method was used to monitor renal cortical and medullary interstitial cGMP levels in anesthetized rabbits. RPP was reduced in two steps: from ambient pressure (89 ± 3 mmHg) to 70 ± 2 mmHg ( step 1) and then to 48 ± 3 mmHg ( step 2). RBF was maintained in step 1 but was significantly decreased in step 2 from 2.94 ± 0.23 to 1.47 ± 0.08 ml · min−1 · g−1. Basal interstitial concentrations of cGMP were significantly lower in the cortex than in the medulla (12.1 ± 1.4 and 19.9 ± 0.4 nmol/l, respectively). Cortical and medullary cGMP did not change in step 1 but were significantly decreased in step 2, with significantly less reduction in cGMP concentrations in the medulla than in the cortex (−25 ± 3 and −44 ± 3%, respectively). Over this pressure range, changes in cortical and medullary cGMP were highly correlated with changes in RBF ( r= 0.94, P < 0.005 for cortex; r = 0.82, P < 0.01 for medulla). Renal interstitial nitrate/nitrite was not changed in step 1 but was significantly decreased in step 2 (−38 ± 2% in cortex and −20 ± 2% in medulla). Nitric oxide synthase inhibition with N G-nitro-l-arginine methyl ester (l-NAME, 30 mg/kg bolus, 50 mg · kg−1 · h−1 iv infusion) significantly decreased RBF (by −46 ± 4%) and interstitial concentrations of cGMP (−27 ± 4% in cortex and −22 ± 4% in medulla, respectively). During l-NAME treatment, renal interstitial concentrations of cGMP in the cortex and medulla were similarly not altered in step 1. However, l-NAME significantly attenuated cGMP responses to a reduction in RPP in step 2. These results indicate that acute changes in RBF result in alterations in nitric oxide-dependent renal interstitial cGMP levels, with differential effects in the medulla compared with the cortex.


1995 ◽  
Vol 269 (1) ◽  
pp. F134-F139 ◽  
Author(s):  
W. H. Beierwaltes

The macula densa is a regulatory site for renin. It contains exclusively the neuronal isoform of nitric oxide synthase (NOS), suggesting NO could stimulate renin secretion through the macula densa pathway. To test whether neuronal NOS mediates renin secretion, renin was stimulated by either the renal baroreceptor or the diuretic furosemide (acting through the macula densa pathway). Renin secretion rate (RSR) was measured in 12 Inactin-anesthetized rats at normal (104 +/- 3 mmHg) and reduced renal perfusion pressure (65 +/- 1 mmHg), before and after selective blockade of the neuronal NOS with 7-nitroindazole (7-NI, 50 mg/kg ip). 7-NI had no effect on basal blood pressure (102 +/- 2 mmHg) or renal blood flow (RBF). Decreasing renal perfusion pressure doubled RSR from 11.8 +/- 3.3 to 22.9 +/- 5.7 ng ANG I.h-1.min-1 (P < 0.01) (ANG I is angiotensin I). Similarly, in 7-NI-treated rats, reduced perfusion doubled RSR from 8.5 +/- 1.8 to 20.5 +/- 6.2 ng ANG I.h-1.min-1 (P < 0.01). Renal hemodynamics and RSR were measured in response to 5 mg/kg iv furosemide in 12 control rats and 11 rats treated with 7-NI. Blocking neuronal NOS did not alter blood pressure (102 +/- 2 mmHg), RBF (5.8 +/- 0.4 ml.min-1.g kidney wt-1), or renal vascular resistance (18.7 +/- 1.4 mmHg.ml-1.min.g kidney wt).(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 264 (1) ◽  
pp. F79-F87 ◽  
Author(s):  
D. S. Majid ◽  
A. Williams ◽  
L. G. Navar

Inhibition of nitric oxide (NO) synthesis by intrarenal administration of nitro-L-arginine (NLA) leads to decreases in urinary sodium excretion (UNaV) in association with the increases in renal vascular resistance (RVR). In the present study, we examined the ability of the kidney to alter its sodium excretion in response to acute changes in renal arterial pressure (RAP) in anesthetized dogs before and during intrarenal infusion of NLA (50 micrograms.kg-1.min-1). NO synthesis inhibition in 11 dogs increased RVR by 32 +/- 4% and decreased renal blood flow (RBF) by 25 +/- 3%, outer cortical blood flow by 25 +/- 6%, urine flow by 37 +/- 14%, UNaV by 71 +/- 5%, and fractional excretion of sodium (FENa) by 71 +/- 4%. Glomerular filtration rate was not significantly changed during NLA infusion. As previously reported, there was suppression of the RBF autoregulation plateau during NO synthesis inhibition. In addition, there was a marked attenuation of urine flow and UNaV responses to reductions in RAP (150 to 75 mmHg), with significant reductions in the slopes of the relationships between RAP vs. UNaV and RAP vs. FENa during NLA infusion. Similar responses were observed in nine other dogs treated with the angiotensin receptor antagonist losartan, indicating that an augmented activity of the renin-angiotensin system is not responsible for attenuation of the slope of the pressure-natriuresis relationship during NLA infusion. These data suggest that NO may participate in the mediation of the pressure-natriuresis response.


1992 ◽  
Vol 2 (9) ◽  
pp. 1371-1387 ◽  
Author(s):  
J C Romero ◽  
V Lahera ◽  
M G Salom ◽  
M L Biondi

The role of nitric oxide in renal function has been assessed with pharmacologic and physiologic interventions. Pharmacologically, the renal vasodilation and, to some extent, the natriuresis produced by endothelium-dependent vasodilators such as acetylcholine and bradykinin are mediated by nitric oxide and also by prostaglandins. However, prostaglandins and nitric oxide do not participate in the renal effects produced by endothelium-independent vasodilators such as atrial natriuretic peptide, prostaglandin I2, and nitroprusside. Physiologically, nitric oxide and prostaglandins exert a strong regulation on the effects produced by changes in renal perfusion pressure. Increments in renal perfusion pressure within the range of RBF autoregulation appear to inhibit prostaglandin synthesis while simultaneously enhancing the formation of nitric oxide. Nitric oxide modulates autoregulatory vasoconstriction and at the same time inhibits renin release. Conversely, a decrease of renal perfusion pressure to the limit of or below RBF autoregulation may inhibit the synthesis of nitric oxide but may trigger the release of prostaglandins, whose vasodilator action ameliorates the fall in RBF and stimulates renin release. Nitric oxide and prostaglandins are also largely responsible for mediating pressure-induced natriuresis. However, unlike prostaglandins, mild impairment of the synthesis of nitric oxide in systemic circulation produces a sustained decrease in sodium excretion, which renders blood pressure susceptible to be increased during high-sodium intake. This effect suggests that a deficiency in the synthesis of nitric oxide could constitute the most effective single disturbance to foster the development of a syndrome similar to that seen in salt-sensitive hypertension.


1984 ◽  
Vol 246 (6) ◽  
pp. F828-F834 ◽  
Author(s):  
L. I. Kleinman ◽  
R. O. Banks

Pressure natriuresis was studied in anesthetized saline-expanded adult (n = 10) and neonatal (n = 23) dogs. One group (protocol B) received ethacrynic acid and amiloride to block distal nephron function. Studies in the other group (protocol A) were done without diuretics. Renal arterial blood pressure was raised by bilateral carotid artery occlusion. Renal perfusion pressure was then lowered in steps by partially occluding the aorta proximal to the renal arteries. In protocol B carotid occlusion was associated with an increase in both absolute and fractional sodium excretion by adult and newborn dogs. Moreover, there was significant negative correlation (P less than 0.01) between absolute change in renal arterial pressure and change in tubular reabsorption of sodium per milliliter glomerular filtrate for both age groups. For each mmHg increase in blood pressure there was greater inhibition of sodium reabsorption in the puppy (0.55 mueq/ml glomerular filtrate) than in the adult (0.18 mueq/ml, P less than 0.05). In protocol A puppies, the inhibition of sodium reabsorption due to increases in renal perfusion pressure was less than that occurring in protocol B, indicating that some of the sodium escaping proximal nephron reabsorption was reabsorbed distally. Results of these studies indicate that during saline expansion pressure natriuresis is primarily a proximal tubular event, and the sensitivity of the proximal tubule to changes in renal arterial blood pressure is greater in the newborn than the adult kidney.


1986 ◽  
Vol 250 (3) ◽  
pp. F425-F429 ◽  
Author(s):  
J. A. Haas ◽  
J. P. Granger ◽  
F. G. Knox

Previous studies in rats have demonstrated that superficial proximal tubule sodium reabsorption does not change in response to alterations in renal perfusion pressure (RPP). The first objective of the present study was to estimate sodium reabsorption in response to acute changes in RPP utilizing fractional lithium reabsorption (FRLi) as an index of fractional sodium reabsorption (FRNa) by the proximal tubule of the kidney as a whole. FRLi decreased in response to increases in RPP, suggesting that sodium reabsorption by the proximal tubule of some nephron population is decreased. Therefore, the second objective of the present study was to test the hypothesis that superficial and deep proximal tubules respond differently to changes in RPP by comparing proximal tubule sodium reabsorption from both nephron populations. In response to an acute change in RPP from 114 +/- 4 to 138 +/- 5 mmHg, FRNa by the proximal tubule and descending limb of Henle's loop in deep nephrons decreased from 71.3 +/- 2.3 to 55.8 +/- 5.6%, but FRNa by the superficial late proximal tubule was not changed: (44.3 +/- 4.8 to 45.1 +/- 3.9%). The urinary fractional reabsorption of sodium decreased from 96.7 +/- 0.6 to 94.5 +/- 0.5%. In summary, these studies demonstrate that increases in RPP have no effect on sodium reabsorption by the proximal tubule of superficial nephrons. In contrast, sodium delivery to the point of micropuncture in the descending limb of Henle's loop of deep nephrons was increased, suggesting inhibition of sodium reabsorption by proximal tubules of deep nephrons in response to increases in RPP.


Sign in / Sign up

Export Citation Format

Share Document