Effect of interactions between nitric oxide and angiotensin II on pressure diuresis and natriuresis

1997 ◽  
Vol 273 (5) ◽  
pp. R1676-R1682 ◽  
Author(s):  
María Isabel Madrid ◽  
Miguel García-Salom ◽  
Jerónimo Tornel ◽  
Marc De Gasparo ◽  
Francisco J. Fenoy

The present study examined the effect of an angiotensin II AT1 or AT2 receptor antagonist on the impairment of the pressure diuresis and natriuresis response produced by nitric oxide (NO) synthesis blockade. N ω-nitro-l-arginine methyl ester (l-NAME, 37 nmol ⋅ kg−1 ⋅ min−1) lowered renal blood flow and reduced the slopes of the pressure diuresis and natriuresis responses by 44 and 40%, respectively. Blockade of AT1 receptors with valsartan increased slightly sodium and water excretion at low renal perfusion pressure (RPP). Blockade of AT2 receptors with PD-123319 had no effect on renal function. The administration of valsartan or PD-123319 to rats given l-NAME had no effect on the renal vasocontriction induced by NO synthesis blockade. In addition, in rats givenl-NAME, valsartan elevated baseline excretory values at all RPP studied, but it had no effect on the sensitivity of the pressure diuresis and natriuresis response. However, the administration of PD-123319 tol-NAME-pretreated rats shifted the slopes of the pressure diuresis and natriuresis responses toward control values, indicating that the impairment produced by NO synthesis blockade on pressure diuresis is dependent on the activation of AT2 angiotensin receptors.

1992 ◽  
Vol 2 (9) ◽  
pp. 1371-1387 ◽  
Author(s):  
J C Romero ◽  
V Lahera ◽  
M G Salom ◽  
M L Biondi

The role of nitric oxide in renal function has been assessed with pharmacologic and physiologic interventions. Pharmacologically, the renal vasodilation and, to some extent, the natriuresis produced by endothelium-dependent vasodilators such as acetylcholine and bradykinin are mediated by nitric oxide and also by prostaglandins. However, prostaglandins and nitric oxide do not participate in the renal effects produced by endothelium-independent vasodilators such as atrial natriuretic peptide, prostaglandin I2, and nitroprusside. Physiologically, nitric oxide and prostaglandins exert a strong regulation on the effects produced by changes in renal perfusion pressure. Increments in renal perfusion pressure within the range of RBF autoregulation appear to inhibit prostaglandin synthesis while simultaneously enhancing the formation of nitric oxide. Nitric oxide modulates autoregulatory vasoconstriction and at the same time inhibits renin release. Conversely, a decrease of renal perfusion pressure to the limit of or below RBF autoregulation may inhibit the synthesis of nitric oxide but may trigger the release of prostaglandins, whose vasodilator action ameliorates the fall in RBF and stimulates renin release. Nitric oxide and prostaglandins are also largely responsible for mediating pressure-induced natriuresis. However, unlike prostaglandins, mild impairment of the synthesis of nitric oxide in systemic circulation produces a sustained decrease in sodium excretion, which renders blood pressure susceptible to be increased during high-sodium intake. This effect suggests that a deficiency in the synthesis of nitric oxide could constitute the most effective single disturbance to foster the development of a syndrome similar to that seen in salt-sensitive hypertension.


1994 ◽  
Vol 267 (2) ◽  
pp. R549-R553 ◽  
Author(s):  
J. Garcia-Estan ◽  
N. M. Atucha ◽  
J. M. Sabio ◽  
F. Vargas ◽  
T. Quesada ◽  
...  

We have evaluated the renal blood flow (RBF) response of cirrhotic rats to endothelium-dependent [acetylcholine (ACh)] and -independent [sodium nitroprusside (NP)] vasodilators. In anesthetized rats, ACh dose dependently increased RBF, but the response of the cirrhotic rats (n = 6) was significantly higher than that of the controls (n = 6). NP also increased RBF in a dose-dependent manner, but there were no differences between both groups. NG-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg i.v.) significantly reduced the responses to ACh in both groups, but those of the cirrhotic rats were still higher than those of the controls. In experiments performed in isolated perfused kidneys, preconstricted with phenylephrine, dose-response curves for ACh and NP were obtained in the presence of indomethacin. Both ACh and NP decreased renal perfusion pressure dose dependently, but only the response of the cirrhotic rats (n = 5) to ACh was significantly higher than that of the controls (n = 5). L-NAME (100 microM) significantly reduced the responses to ACh and increased those of NP and abolished the differences between groups, except at the high dose of ACh. These results demonstrate an elevated endothelium-dependent vasodilator response in the cirrhotic kidney, which is eliminated by combined prostaglandin and nitric oxide (NO) synthesis inhibition and suggest that increased intrarenal activity of NO may be contributing to the renal alterations of liver cirrhosis.


2002 ◽  
Vol 282 (2) ◽  
pp. F238-F244 ◽  
Author(s):  
Akira Nishiyama ◽  
Shoji Kimura ◽  
Toshiki Fukui ◽  
Matlubur Rahman ◽  
Hirohito Yoneyama ◽  
...  

We examined responses of renal interstitial guanosine 3′,5′-cyclic monophosphate (cGMP) to changes in renal perfusion pressure (RPP) within and below the range of renal blood flow (RBF) autoregulation. A microdialysis method was used to monitor renal cortical and medullary interstitial cGMP levels in anesthetized rabbits. RPP was reduced in two steps: from ambient pressure (89 ± 3 mmHg) to 70 ± 2 mmHg ( step 1) and then to 48 ± 3 mmHg ( step 2). RBF was maintained in step 1 but was significantly decreased in step 2 from 2.94 ± 0.23 to 1.47 ± 0.08 ml · min−1 · g−1. Basal interstitial concentrations of cGMP were significantly lower in the cortex than in the medulla (12.1 ± 1.4 and 19.9 ± 0.4 nmol/l, respectively). Cortical and medullary cGMP did not change in step 1 but were significantly decreased in step 2, with significantly less reduction in cGMP concentrations in the medulla than in the cortex (−25 ± 3 and −44 ± 3%, respectively). Over this pressure range, changes in cortical and medullary cGMP were highly correlated with changes in RBF ( r= 0.94, P < 0.005 for cortex; r = 0.82, P < 0.01 for medulla). Renal interstitial nitrate/nitrite was not changed in step 1 but was significantly decreased in step 2 (−38 ± 2% in cortex and −20 ± 2% in medulla). Nitric oxide synthase inhibition with N G-nitro-l-arginine methyl ester (l-NAME, 30 mg/kg bolus, 50 mg · kg−1 · h−1 iv infusion) significantly decreased RBF (by −46 ± 4%) and interstitial concentrations of cGMP (−27 ± 4% in cortex and −22 ± 4% in medulla, respectively). During l-NAME treatment, renal interstitial concentrations of cGMP in the cortex and medulla were similarly not altered in step 1. However, l-NAME significantly attenuated cGMP responses to a reduction in RPP in step 2. These results indicate that acute changes in RBF result in alterations in nitric oxide-dependent renal interstitial cGMP levels, with differential effects in the medulla compared with the cortex.


1995 ◽  
Vol 269 (1) ◽  
pp. F134-F139 ◽  
Author(s):  
W. H. Beierwaltes

The macula densa is a regulatory site for renin. It contains exclusively the neuronal isoform of nitric oxide synthase (NOS), suggesting NO could stimulate renin secretion through the macula densa pathway. To test whether neuronal NOS mediates renin secretion, renin was stimulated by either the renal baroreceptor or the diuretic furosemide (acting through the macula densa pathway). Renin secretion rate (RSR) was measured in 12 Inactin-anesthetized rats at normal (104 +/- 3 mmHg) and reduced renal perfusion pressure (65 +/- 1 mmHg), before and after selective blockade of the neuronal NOS with 7-nitroindazole (7-NI, 50 mg/kg ip). 7-NI had no effect on basal blood pressure (102 +/- 2 mmHg) or renal blood flow (RBF). Decreasing renal perfusion pressure doubled RSR from 11.8 +/- 3.3 to 22.9 +/- 5.7 ng ANG I.h-1.min-1 (P < 0.01) (ANG I is angiotensin I). Similarly, in 7-NI-treated rats, reduced perfusion doubled RSR from 8.5 +/- 1.8 to 20.5 +/- 6.2 ng ANG I.h-1.min-1 (P < 0.01). Renal hemodynamics and RSR were measured in response to 5 mg/kg iv furosemide in 12 control rats and 11 rats treated with 7-NI. Blocking neuronal NOS did not alter blood pressure (102 +/- 2 mmHg), RBF (5.8 +/- 0.4 ml.min-1.g kidney wt-1), or renal vascular resistance (18.7 +/- 1.4 mmHg.ml-1.min.g kidney wt).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (2) ◽  
pp. F307-F314 ◽  
Author(s):  
R. Loutzenhiser ◽  
L. Chilton ◽  
G. Trottier

An adaptation of the in vitro perfused hydronephrotic rat kidney model allowing in situ measurement of arteriolar membrane potentials is described. At a renal perfusion pressure of 80 mmHg, resting membrane potentials of interlobular arteries (22 +/- 2 microns) and afferent (14 +/- 1 microns) and efferent arterioles (12 +/- 1 microns) were -40 +/- 2 (n = 8), -40 +/- 1 (n = 45), and -38 +/- 2 mV (n = 22), respectively (P = 0.75). Using a dual-pipette system to stabilize the impalement site, we measured afferent and efferent arteriolar membrane potentials during angiotensin II (ANG II)-induced vasoconstriction. ANG II (0.1 nM) reduced afferent arteriolar diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.005) and membrane potentials from -40 +/- 2 to -29 +/- mV (P = 0.012). ANG II elicited a similar vasoconstriction in efferent arterioles, decreasing diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.004), but failed to elicit a significant depolarization (-39 +/- 2 for control; -36 +/- 3 mV for ANG II; P = 0.27). Our findings thus indicate that resting membrane potentials of pre- and postglomerular arterioles are similar and lie near the threshold activation potential for L-type Ca channels. ANG II-induced vasoconstriction appears to be closely coupled to membrane depolarization in the afferent arteriole, whereas mechanical and electrical responses appear to be dissociated in the efferent arteriole.


1994 ◽  
Vol 267 (1) ◽  
pp. R253-R259 ◽  
Author(s):  
D. M. Strick ◽  
M. J. Fiksen-Olsen ◽  
J. C. Lockhart ◽  
R. J. Roman ◽  
J. C. Romero

We studied the responses of total renal blood flow (RBF) and renal medullary blood flow (RMBF) to changes in renal perfusion pressure (RPP) within and below the range of renal autoregulation in the anesthetized dog (n = 7). To measure RMBF, we developed a technique in which the medulla is exposed by excising a section of infarcted cortex and a multiple optical fiber flow probe, connected to a laser-Doppler flowmeter, is placed on the medulla. At the baseline RPP of 120 +/- 1 mmHg, RBF was 2.58 +/- 0.33 ml.min-1.g perfused kidney wt-1, and RMBF was 222 +/- 45 perfusion units. RPP was then decreased in consecutive 20-mmHg steps to 39 +/- 1 mmHg. At 80 +/- 1 mmHg, RBF remained at 89 +/- 4% of the baseline value; however, RMBF had decreased significantly (P < 0.05) to 73 +/- 4% of its baseline value. The efficiency of autoregulation of RBF and of RMBF within the RPP range of 120 to 80 mmHg was determined by calculating an autoregulatory index (AI) for each parameter using the formula AI = (%delta blood flow)/(%delta RPP). An AI of 0 indicates perfect autoregulation, and an index of 1 indicates a system with a fixed resistance. The AI for RBF averaged 0.33 +/- 0.12 over this pressure range and showed a significantly greater (P < 0.05) autoregulatory ability than did the RMBF (0.82 +/- 0.13). Decreasing perfusion pressure < 80 mmHg produced significant decreases in both RBF and RMBF.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 72 (7) ◽  
pp. 782-787 ◽  
Author(s):  
L. Fan ◽  
S. Mukaddam-Daher ◽  
J. Gutkowska ◽  
B. S. Nuwayhid ◽  
E. W. Quillen Jr.

To further investigate the influence of renal nerves on renin secretion, the renin secretion responses to step reductions of renal perfusion pressure (RPP) were studied in conscious sheep with innervated kidneys (n = 5) and with bilaterally denervated kidneys (n = 5). The average basal level of RPP in sheep with denervated kidneys (82 ± 4 mmHg; 1 mmHg = 133.3 Pa) was similar to that in sheep with innervated kidneys (83 ± 3 mmHg). RPP was reduced in four sequential 15-min steps, to a final level of 54 ± 2 mmHg in sheep with innervated kidneys and to 57 ± 1 mmHg in denervated sheep. The renin secretion rate was increased as RPP was reduced in sheep with innervated kidneys. Baseline peripheral plasma renin activity was reduced and there was almost no response of renin secretion rate to reduction of RPP in sheep with denervated kidneys. Also, baseline renal blood flow, urine flow rate, sodium excretion rate, and potassium excretion rate were higher in sheep with denervated kidneys than those with innervated kidneys. Baseline plasma angiotensin II was similar in both groups of sheep. As RPP was decreased, plasma angiotensin II was increased in sheep with innervated kidneys, but was not significantly altered in sheep with denervated kidneys. Plasma atrial natriuretic factor was unaltered by either reduction of RPP or renal denervation. In conclusion, hormonal factors, such as angiotensin II and atrial natriuretic factor, do not account for the dramatic suppression of renin secretion in response to the reduction of RPP in sheep with bilateral renal denervation. Renal nerves are a necessary component in the control of renin secretion during reduction of RPP and may contribute to the regulation of baseline plasma renin activity and sodium excretion rate in conscious ewes.Key words: renin secretion, renal perfusion pressure, renal nerves, denervation, sheep.


1975 ◽  
Vol 229 (4) ◽  
pp. 983-988 ◽  
Author(s):  
PA Jose ◽  
LM Slotkoff ◽  
S Montgomery ◽  
PL Calcagno ◽  
G Eisner

The ability of the immature kidney to autoregulate blood flow was investigated. Renal blood flow was measured by electromagnetic flowmeter. In six puppies, selective blockade of the intrarenal effects of angiotensin II (AII) by [1-sarcosine, 8-alanine]angiotensin II (anti-AII) administered into the renal artery did not change renal blood flow. During selective renal AII blockade, intravenous AII raised perfusion pressure from 76 +/- 2 to 100 +/- 6 mmHg. Renal blood flow increased from 1.59 +/- 0.29 to 1.98 +/- 0.59 ml/g kidney per min, but returned to control levels within 40 s in spite of persistent arterial pressure elevation. In another group of seven puppies, renal blood flow remained constant despite reduction of renal perfusion pressure by aortic constriction to 60 mmHg. In two of these seven puppies intrarenal anti-AII did not abolish autoregulation. Autoregulation of renal blood flow occurs in the puppy and is not influenced by inhibition of angiotensin. The renin-angiotensin system does not appear to be involved in the normal regulation of renal blood flow in the puppy.


1977 ◽  
Vol 232 (2) ◽  
pp. F167-F172 ◽  
Author(s):  
E. H. Prosnitz ◽  
E. J. Zambraski ◽  
G. F. DiBona

Bilateral carotid artery occlusion results in an increase in mean arterial pressure, an increase in renal sympathetic nerve activity, and a redistribution of renal blood flow from inner to outer cortex. To elucidate the mechanism of the renal blood flow redistribution, carotid artery occlusion was performed in anesthetized dogs with the left kidney either having renal perfusion pressure maintained constant (aortic constriction) or having alpha-adrenergic receptor blockade (phenoxybenzamine); the right kidney of the same dog served to document the normal response. When renal perfusion pressure was maintained constant, renal blood flow distribution (microspheres) was unchanged by carotid artery occlusion. In the presence of renal alpha-adrenergic receptor blockade, carotid artery occlusion elicited the usual redistribution of renal blood flow from inner to outer cortex. The redistribution of renal blood flow observed after carotid artery occlusion is mediated by the increase in renal perfusion pressure rather than the increase in renal sympathetic nerve activity.


Sign in / Sign up

Export Citation Format

Share Document