Effects of hypercapnia on uterine and umbilical circulations in conscious pregnant sheep

1976 ◽  
Vol 41 (5) ◽  
pp. 727-733 ◽  
Author(s):  
A. M. Walker ◽  
G. K. Oakes ◽  
R. Ehrenkranz ◽  
M. McLaughlin ◽  
R. A. Chez

Changes in the uterine and umbilical circulations during induced hypercapnia were studied in nine unanesthetized near-term pregnant sheep. Blood flows were measured with electromagnetic flow transducers and arterial pressures with vascular catheters implanted under anesthesia 2–16 days prior to experiments. Hypercapnia was induced in the fetus alone by giving acetazolamide iv to the fetus, 100–200 mg/kg. Mean fetal arterial Pco2 increased from49.5 to 63.4 mmHg but no significant changes in umbilical blood flowoccurred. Stepwise increases in both maternal and fetal arterial Pco2 were induced by increasing maternal inspired CO2 concentration to a maximum of 12%. Nodignificant changes occurred in uterine or umbilical circulations until hypercapnia was severe (maternal arterial Pco2 greater than 60 mmHg, fetal arterial Pco2 greater than 70 mmHg). With severe hypercapnia uterine vascular resistance increased significantly and uterine blood flow decreased despitean increase in maternal arterial pressure; fetal arterial pressure and umbilical blood flow increased significantly, but umbilical vascular resistancedid not. We conclude that hypercapnia in conscious pregnant sheep is associated with significant changes in uterine and umbilical circulations, but only when hypercapnia is severe. Carbon dioxide is unlikely to be a factor innormal physiological regulation of the uteroplacental circulation in this species.

1976 ◽  
Vol 231 (3) ◽  
pp. 754-759 ◽  
Author(s):  
JH Rankin ◽  
TM Phernetton

The effect of PGE2 on regional blood flows in the chronically catheterized near-term pregnant sheep was investigated using radioactive microspheres. The injection of 20 mug PGE2 per kilogram into the left ventricle of eight sheep resulted in no change in maternal brain and noncotyledonary uterine flow. The renal blood flow increased from 692 to 892 ml/min (P less than 0.004). The uterine blood flow decreased from 673 to 317 ml/min (P less than 0.001). The trium was bypassed by injecting 7 mug PGE2 per kilogram of sheep into a fetal venous catheter and permitting it to reach the placental vasculature after placental transfer. Eleven sets of observations were made in eight animals. We observed no change in the intrauterine pressure, maternal brain flow, and noncotyledonary uterine blood flow secondary to this procedure. The maternal renal blood flow changed from 592 to 669 ml/min (P less than 0.007). The uterine blood flow increased from 762 to 853 ml/min (P less than 0.02). The uterine vascular resistance decreased from 0.124 to 0.115 mmHg x min/ml (P less than 0.04). It was concluded that 1) PGE3 crosses the placenta quite readily, and 2) PGE3 causes dilatation of the maternal placental vascular bed.


1986 ◽  
Vol 250 (3) ◽  
pp. R427-R434 ◽  
Author(s):  
J. A. Owens ◽  
J. Falconer ◽  
J. S. Robinson

Endometrial caruncles were excised from sheep (caruncle sheep) before pregnancy. The effect of this on umbilical and uterine blood flows in a subsequent pregnancy was examined. Thirteen caruncle and twelve control sheep with indwelling vascular catheters were studied at 121 and 130 days pregnancy. In caruncle sheep, fetal, placental, and total uterine content weights were significantly lower than in control sheep. Six caruncle sheep carried normal-sized fetuses (weight within +/- 2 SD of mean weight for control fetuses) and seven carried small fetuses (weight greater than +/- 2 SD below mean weight for control fetuses). Mean weights of placentas in these groups were 0.290 +/- 0.067 and 0.156 +/- 0.069 kg, respectively, compared with 0.459 +/- 0.157 kg in control sheep. In small caruncle fetuses, umbilical and uterine blood flows and placental antipyrine clearance were significantly lower than in controls at 121 and 130 days gestation. Only umbilical blood flow was reduced in normal-sized caruncle fetuses. Umbilical blood flow and placental antipyrine clearance increased with gestational age in control sheep but not in sheep with normal-sized or small caruncle fetuses. In all sheep, umbilical and uterine blood flows and antipyrine clearance correlated with placental weight. Umbilical blood flow per kilogram of placenta but not uterine blood flow per kilogram of placenta correlated inversely with placental weight. Fetal weight at 130 days generally correlated with placental weight, umbilical and uterine blood flows, and antipyrine clearance in a curvilinear fashion such that fetal weight was not greatly restricted until these variables were less than or equal to 65% of control values.


1990 ◽  
Vol 259 (1) ◽  
pp. H197-H203 ◽  
Author(s):  
K. E. Clark ◽  
G. L. Irion ◽  
C. E. Mack

Although the uterine vascular responses to endogenous vasoactive substances have been extensively investigated in pregnant sheep, the fetal umbilical responses to angiotensin II (ANG II) and norepinephrine (NE) have not been well characterized. Twenty-five pregnant ewes between 105 and 115 days of gestation were anesthetized and instrumented for hemodynamic measurements, systemic fetal and maternal intravenous infusions, and local maternal uterine arterial infusions of ANG II and NE. Fetal and maternal arterial pressure and heart rate, maternal uterine blood flow (total of left and right middle uterine arteries), and fetoplacental blood flow (common umbilical artery) were measured during continuous infusions of ANG II or NE. Fetal infusions of ANG II (0.03–1.0 micrograms.min-1.kg estimated fetal body wt-1) increased fetal arterial blood pressure by as much as 44% over base-line values, decreased umbilical blood flow by as much as 63%, and increased umbilical vascular resistance by up to 345%. Fetal infusions of NE (0.1–3 micrograms.min-1.kg-1) increased fetal arterial pressure 42% and increased umbilical vascular resistance by up to 38% but did not significantly alter fetoplacental blood flow. No significant maternal changes were observed during fetal infusions. Maternal infusion of ANG II increased maternal arterial pressure by as much as 59% and significantly increased uterine vascular resistance at the two highest doses but significantly decreased uterine blood flow only at the highest dose (17%; P less than 0.05). Maternal infusions of NE increased arterial pressure by as much as 113%, decreased uterine blood flow by as much as 76%, and increased uterine vascular resistance 3- to 10-fold over the base-line value.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (5) ◽  
pp. R735-R739 ◽  
Author(s):  
L. P. Reynolds ◽  
C. L. Ferrell

Rates of uterine and umbilical blood flows and transplacental clearance of deuterium oxide (D2O) were determined for cows on 137 +/- 1.0 (SE, n = 9), 180 +/- 0.5 (n = 8), 226 +/- 0.4 (n = 9), and 250 +/- 1.8 (n = 5) days of gestation. From days 137 to 250, rates increased 4.5-fold for uterine blood flow, 21-fold for umbilical blood flow, and 14-fold for clearance of D2O. Changes in rates of umbilical blood flow and D2O clearance paralleled increased rates of fetal growth and metabolism, which have previously been reported to occur during the last half of gestation. The regressions of D2O clearance on uterine and umbilical blood flows were significant (P less than 0.01) and explained 94-99% of the variation in placental clearance of D2O. Because the rate of D2O clearance was always less than that of uterine and umbilical blood flows, and because a relatively simple statistical model explained most of the variation in clearance, it was suggested that a concurrent or countercurrent arrangement of maternal and fetal placental microvasculatures is not adequate to explain clearance of highly diffusable substances across the bovine placenta. In addition, a placental exchange diagram of the data showed the existence of severe uneven distribution of maternal and fetal placental blood flows and/or significant shunting of maternal and fetal placental flows away from areas of exchange. Taken together, these data indicate that the placenta of the cow, like those of the sheep and goat, represents a relatively inefficient system of transplacental exchange.


1990 ◽  
Vol 259 (6) ◽  
pp. E851-E855
Author(s):  
B. A. Meyer ◽  
S. W. Walsh ◽  
V. M. Parisi

Leukotrienes are synthesized during pregnancy and produce cardiovascular effects in adults. We hypothesized that leukotriene C4 would cause vasoconstriction in the fetus and placenta. Eight near-term, unanesthetized ovine fetuses were studied before and after infusion of 10 micrograms leukotriene C4 (LTC4) into the fetal vena cava. Cardiovascular monitoring of maternal and fetal arterial pressures and heart rates was performed. Fetal blood flows were measured by the radioactive-microsphere technique. Sustained elevations in systolic and diastolic blood pressure and decreased fetal heart rate began by 1 min and returned to baseline by 30 min. Arterial pH fell from 7.33 +/- 0.01 to 7.29 +/- 0.01 at 15 min (P less than 0.05) and to 7.29 +/- 0.01 at 30 min (P less than 0.05), with a significant increase in base deficit from 0.7 +/- 0.7 to 3.5 +/- 0.7 at 15 min (P less than 0.05) and to 2.9 +/- 1.0 at 30 min (P less than 0.05). Fetal PO2 and PCO2 were unchanged. Significant decreases in blood flow and resistance were seen in the umbilical placental circulation as well as in fetal skeletal muscle and intestine. Blood flow and resistance were unchanged in the renal and adrenal vascular beds. Fetal administration of LTC4 caused no changes in maternal cardiovascular parameters. These findings represent the first in vivo studies of the effects of a lipoxygenase metabolite on fetal-placental blood flow.


1985 ◽  
Vol 63 (6) ◽  
pp. 937-943 ◽  
Author(s):  
David J. Boarini ◽  
Neal F. Kassell ◽  
James A. Sprowell ◽  
Julie J. Olin ◽  
Hans C. Coester

✓ Profound arterial hypotension is à commonly used adjunct in surgery for aneurysms and arteriovenous malformations. Hyperventilation with hypocapnia is also used in these patients to increase brain slackness. Both measures reduce cerebral blood flow (CBF). Of concern is whether CBF is reduced below ischemic thresholds when both techniques are employed together. To determine this, 12 mongrel dogs were anesthetized with morphine, nitrous oxide, and oxygen, and then paralyzed with pancuronium and hyperventilated. Arterial pCO2 was controlled by adding CO2 to the inspired gas mixture. Cerebral blood flow was measured at arterial pCO2 levels of 40 and 20 mm Hg both before and after mean arterial pressure was lowered to 40 mm Hg with adenosine enhanced by dipyridamole. In animals where PaCO2 was reduced to 20 mm Hg and mean arterial pressure was reduced to 40 mm Hg, cardiac index decreased 42% from control and total brain blood flow decreased 45% from control while the cerebral metabolic rate of oxygen was unchanged. Hypocapnia with hypotension resulted in small but statistically significant reductions in all regional blood flows, most notably in the brain stem. The reported effects of hypocapnia on CBF during arterial hypotension vary depending on the hypotensive agents used. Profound hypotension induced with adenosine does not eliminate CO2 reactivity, nor does it lower blood flow to ischemic levels in this model, even in the presence of severe hypocapnia.


1975 ◽  
Vol 228 (5) ◽  
pp. 1497-1500 ◽  
Author(s):  
DD Buss ◽  
GE Bisgard ◽  
CA Rawlings ◽  
JH Rankin

Uteroplacental blood flow was measured by the radioactive-microsphere technique in eight near-term pregnant ewes during a normal control period and during maternal metabolic alkalosis. All measurements were made on awake, unanesthetized animals. Alkalosis, defined for this study as an arterial pH of 7.60 or greater, was produced by the oral administration of sodium bicarbonate, 3 g/kg body wt. The rise in pH thus produced was unaccompanied by significant changes in systemic arterial blood pressure and cardiac output, while maternal arterial Pco2 rose slightly from control levels. Cotyledonary blood flow declined from a control value of 1,177 ml/min to 1,025 ml/min during alkalosis. This decline of 13 percent in cotyledonary blood flow is significant (P smaller than 0.002). Blood flow to the remaining uterine tissue, or noncotyledonary uterus, did not change with alkalosis, being maintained at approximately 195 ml/min. It is concluded that maternal alkalosis, unaccompained by major changes in Pco2 and systemic arterial pressure, causes a small increase in the resistance of the uteroplacental circulation.


1995 ◽  
Vol 268 (2) ◽  
pp. R303-R309 ◽  
Author(s):  
S. B. Hooper ◽  
D. W. Walker ◽  
R. Harding

Our aim was to compare the effects of short (4 h) and prolonged (24 h) periods of reduced uterine blood flow (RUBF) on fetal and placental uptake of O2, glucose, and lactate. In pregnant sheep, uterine and umbilical blood flows were measured under normal conditions and after 4 and 24 h of RUBF. A 50% reduction in uterine blood flow caused a 56% reduction in fetal arterial O2 saturation (SaO2). Umbilical blood flow increased from 325 +/- 33 to 378 +/- 32 ml.min-1.kg-1 (P < 0.05) after 4 h but was not different from pre-RUBF values after 24 h. O2 uptake by the gravid uterus was not altered by RUBF, due to an increase (84%) in uterine O2 extraction. Similarly, uteroplacental and fetal O2 consumptions and fetal glucose uptake were not affected by RUBF, whereas uteroplacental glucose uptake was significantly reduced after 4 h (by 42%) and 24 h (by 58%) of RUBF. Fetal lactate uptake was greatly reduced from 78.7 +/- 15.5 to -167 +/- 57 mumol.min-1.kg-1 after 4 h and to -198 +/- 80 mumol.min-1.kg-1 after 24 h of RUBF; negative values indicate placental lactate uptake from the fetal circulation. Thus, although RUBF significantly reduced fetal SaO2, fetal and uteroplacental O2 consumptions did not change. In addition, although fetal glucose uptake was not altered by RUBF, during RUBF the placenta became a major site of lactate clearance from the fetal circulation.


1975 ◽  
Vol 229 (2) ◽  
pp. 279-285 ◽  
Author(s):  
EO Fuller ◽  
PM Galletti ◽  
T Takeuchi

In vivo measurements of vessel diameter, latex injections, and acrylic-cast studies indentified the middle uterine arteries as the main source of blood supply to the pregnant sheep uterus. Collateral circulation stemmed from the dorsal uterine arteries, and the ovarian arteries, and small cervical branches derived from the external iliac arteries (in decreasing order of importance). These morphological observations were related to estimates of collateral flow obtained during isolated, in situ perfusion of the pregnant sheep uterus carried out through the cannulated middle uterine arteries. Collateral blood flow was estimated from the shift of the flow-pressure curve produced by inflation of a balloon catheter advanced into the aorta below the renal arteries. Middle uterine artery flow to one horn increased from 162 +/- 23 ml/min in midgestation to 323 +/- 44 ml/min near term. Collateral uterine blood flow did not change significantly: 82 +/- 15 ml/min in midterm, 74 +/- 9 ml/min near term. Collateral flow consituted a larger fraction of inflow to the horn containing the fetus in 9 of 10 single pregnancies.


Sign in / Sign up

Export Citation Format

Share Document