Differential responses of uterine and umbilical vasculatures to angiotensin II and norepinephrine

1990 ◽  
Vol 259 (1) ◽  
pp. H197-H203 ◽  
Author(s):  
K. E. Clark ◽  
G. L. Irion ◽  
C. E. Mack

Although the uterine vascular responses to endogenous vasoactive substances have been extensively investigated in pregnant sheep, the fetal umbilical responses to angiotensin II (ANG II) and norepinephrine (NE) have not been well characterized. Twenty-five pregnant ewes between 105 and 115 days of gestation were anesthetized and instrumented for hemodynamic measurements, systemic fetal and maternal intravenous infusions, and local maternal uterine arterial infusions of ANG II and NE. Fetal and maternal arterial pressure and heart rate, maternal uterine blood flow (total of left and right middle uterine arteries), and fetoplacental blood flow (common umbilical artery) were measured during continuous infusions of ANG II or NE. Fetal infusions of ANG II (0.03–1.0 micrograms.min-1.kg estimated fetal body wt-1) increased fetal arterial blood pressure by as much as 44% over base-line values, decreased umbilical blood flow by as much as 63%, and increased umbilical vascular resistance by up to 345%. Fetal infusions of NE (0.1–3 micrograms.min-1.kg-1) increased fetal arterial pressure 42% and increased umbilical vascular resistance by up to 38% but did not significantly alter fetoplacental blood flow. No significant maternal changes were observed during fetal infusions. Maternal infusion of ANG II increased maternal arterial pressure by as much as 59% and significantly increased uterine vascular resistance at the two highest doses but significantly decreased uterine blood flow only at the highest dose (17%; P less than 0.05). Maternal infusions of NE increased arterial pressure by as much as 113%, decreased uterine blood flow by as much as 76%, and increased uterine vascular resistance 3- to 10-fold over the base-line value.(ABSTRACT TRUNCATED AT 250 WORDS)

1989 ◽  
Vol 257 (1) ◽  
pp. H17-H24 ◽  
Author(s):  
C. R. Rosenfeld ◽  
R. P. Naden

The uteroplacental vasculature is more refractory to angiotensin II (ANG II) than the systemic vasculature as a whole. To ascertain the differences in responses between reproductive and nonreproductive tissues that account for this, we infused ANG II (0.573, 5.73, and 11.5 micrograms/min) in pregnant sheep (137 +/- 5 days of gestation) and monitored arterial pressure (MAP), heart rate, and uterine blood flow (UBF); cardiac output and regional blood flows were measured with radiolabeled microspheres. Dose-dependent changes in MAP, UBF, and systemic (SVR) and uterine (UVR) vascular resistance occurred (P less than 0.05); systemic responses exceeded uterine (P less than 0.05), except with 11.5 micrograms/min, when % delta UVR = % delta SVR, % delta UVR greater than % delta MAP, and UBF fell 29%. Although a dose-dependent rise in placental resistance occurred, blood flow was unaffected except at 11.5 micrograms ANG II/min, falling 16.8 +/- 3.5% (P = 0.059). In contrast, endometrial perfusion decreased 68 +/- 4.2 and 81 +/- 1.8% (P less than 0.01) with 5.73 and 11.5 micrograms ANG II/min, respectively. Myometrial responses were intermediate, thus placental flow increased from 75 to greater than 90% of total UBF. Adipose, renal, and adrenal glands were extremely sensitive to ANG II, with blood flows decreasing maximally at 0.573 micrograms/min (P less than 0.05). Maximum adipose vascular resistance occurred at 0.573 micrograms/min, greater than 400% (P less than 0.001), exceeding responses in all tissues (P less than 0.05). The placenta is less responsive to ANG II than other uterine and most nonreproductive tissues, resulting in preferential maintenance of uteroplacental perfusion and protecting the fetus from the effects of this vasoconstrictor.


1990 ◽  
Vol 259 (2) ◽  
pp. H464-H472 ◽  
Author(s):  
T. Yoshimura ◽  
R. R. Magness ◽  
C. R. Rosenfeld

During ovine pregnancy the uteroplacental vasculature is less responsive to angiotensin II (ANG II)-induced vasoconstriction than the systemic vasculature, whereas responses to alpha-agonists are just the opposite. Comparisons of fetal systemic and placental vascular responses to these agents are not well described, nor have they been compared with maternal responses. We determined steady-state responses to fetal infusions (5-7 min) of ANG II (0.023-5.73 micrograms/min) and phenylephrine (PHEN, 0.031-7.64 micrograms/min), continuously monitoring mean arterial pressure (MAP), heart rate (HR), and umbilical blood flow (UmBF). Although both vasoconstrictors caused dose-dependent increases in MAP and umbilical vascular resistance (UmVR), responsiveness (delta MAP and delta UmVR) to ANG II (mol/min) was 35- to 60-fold greater than to PHEN. ANG II caused dose-dependent decreases in UmBF (2-48%); PHEN had minimal effects except at the highest dose, UmBF decreasing only 18%. Although patterns of fetal responses of MAP, UmBF, and UmVR to ANG II resembled maternal responses of MAP and uterine blood flow and uterine vascular resistance, the former were greatly attenuated. Similar observations were made with PHEN for UmBF and UmVR but not MAP. ANG II is a more potent fetal systemic and placental vasoconstrictor than PHEN; however, compared with those of the mother the responses are attenuated. Moreover, the fetoplacental vascular bed appears unresponsive to alpha-adrenergic stimulation, possibly reflecting a mechanism for maintaining UmBF when plasma catecholamines are elevated.


2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


1999 ◽  
Vol 277 (5) ◽  
pp. E920-E926 ◽  
Author(s):  
Joyce M. Richey ◽  
Marilyn Ader ◽  
Donna Moore ◽  
Richard N. Bergman

We set out to examine whether angiotensin-driven hypertension can alter insulin action and whether these changes are reflected as changes in interstitial insulin (the signal to which insulin-sensitive cells respond to increase glucose uptake). To this end, we measured hemodynamic parameters, glucose turnover, and insulin dynamics in both plasma and interstitial fluid (lymph) during hyperinsulinemic euglycemic clamps in anesthetized dogs, with or without simultaneous infusions of angiotensin II (ANG II). Hyperinsulinemia per se failed to alter mean arterial pressure, heart rate, or femoral blood flow. ANG II infusion resulted in increased mean arterial pressure (68 ± 16 to 94 ± 14 mmHg, P < 0.001) with a compensatory decrease in heart rate (110 ± 7 vs. 86 ± 4 mmHg, P < 0.05). Peripheral resistance was significantly increased by ANG II from 0.434 to 0.507 mmHg ⋅ ml−1⋅ min ( P < 0.05). ANG II infusion increased femoral artery blood flow (176 ± 4 to 187 ± 5 ml/min, P < 0.05) and resulted in additional increases in both plasma and lymph insulin (93 ± 20 to 122 ± 13 μU/ml and 30 ± 4 to 45 ± 8 μU/ml, P < 0.05). However, glucose uptake was not significantly altered and actually had a tendency to be lower (5.9 ± 1.2 vs. 5.4 ± 0.7 mg ⋅ kg−1⋅ min−1, P > 0.10). Mimicking of the ANG II-induced hyperinsulinemia resulted in an additional increase in glucose uptake. These data imply that ANG II induces insulin resistance by an effect independent of a reduction in interstitial insulin.


1976 ◽  
Vol 41 (5) ◽  
pp. 727-733 ◽  
Author(s):  
A. M. Walker ◽  
G. K. Oakes ◽  
R. Ehrenkranz ◽  
M. McLaughlin ◽  
R. A. Chez

Changes in the uterine and umbilical circulations during induced hypercapnia were studied in nine unanesthetized near-term pregnant sheep. Blood flows were measured with electromagnetic flow transducers and arterial pressures with vascular catheters implanted under anesthesia 2–16 days prior to experiments. Hypercapnia was induced in the fetus alone by giving acetazolamide iv to the fetus, 100–200 mg/kg. Mean fetal arterial Pco2 increased from49.5 to 63.4 mmHg but no significant changes in umbilical blood flowoccurred. Stepwise increases in both maternal and fetal arterial Pco2 were induced by increasing maternal inspired CO2 concentration to a maximum of 12%. Nodignificant changes occurred in uterine or umbilical circulations until hypercapnia was severe (maternal arterial Pco2 greater than 60 mmHg, fetal arterial Pco2 greater than 70 mmHg). With severe hypercapnia uterine vascular resistance increased significantly and uterine blood flow decreased despitean increase in maternal arterial pressure; fetal arterial pressure and umbilical blood flow increased significantly, but umbilical vascular resistancedid not. We conclude that hypercapnia in conscious pregnant sheep is associated with significant changes in uterine and umbilical circulations, but only when hypercapnia is severe. Carbon dioxide is unlikely to be a factor innormal physiological regulation of the uteroplacental circulation in this species.


2000 ◽  
Vol 278 (2) ◽  
pp. H353-H359 ◽  
Author(s):  
Donna S. Lambers ◽  
Suzanne G. Greenberg ◽  
Kenneth E. Clark

The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 μg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng ⋅ kg−1 ⋅ min−1for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT2) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT1) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT2 blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 μg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow ( P < 0.03), which were potentiated in the presence of the AT2 antagonist ( P < 0.02). Addition of the AT1 antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure ( P < 0.01). Significant uterine vasodilation ( P < 0.01) was noted with AT1 blockade in the second experiment, which was reversed by administration of the AT2 antagonist or by the nitric oxide synthetase inhibitor N ω-nitro-l-arginine methyl ester. We conclude that the AT1- receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT2-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT2-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.


1986 ◽  
Vol 251 (1) ◽  
pp. H148-H152
Author(s):  
G. D. Fink ◽  
C. A. Bruner ◽  
M. L. Mangiapane

Previous studies implicated the ventral median preoptic nucleus (MNPOv) in cardiovascular responses to circulating and intracerebroventricular angiotensin II (ANG II) and in normal cardiovascular and fluid homoeostasis. In the present experiments, chronically catheterized rats received continuous (24 h/day) intravenous infusions of ANG II (10 ng/min) for 5 days, and changes in mean arterial pressure, heart rate, water intake and urinary electrolyte and water excretion were determined daily. Three groups of rats were compared as follows: 1) sham-operated control rats (n = 12), 2) rats with 20-70% of the MNPOv ablated electrolytically (n = 6), and 3) rats with over 90% of the MNPOv ablated (n = 5). The organum vasculosum of the lamina terminalis was intact in all three groups. Base-line values of all measured variables were identical in the three groups on two control days preceding ANG II infusion and on two recovery days after infusion. During the administration of ANG II for 5 days, mean arterial pressure rose significantly (and similarly) in all three groups of rats; no other variable was significantly affected by ANG II infusion. These results suggest that neural pathways originating in, or passing through, the MNPOv region are not critical in the pathogenesis of ANG II-induced hypertension in the rat.


1995 ◽  
Vol 268 (2) ◽  
pp. R303-R309 ◽  
Author(s):  
S. B. Hooper ◽  
D. W. Walker ◽  
R. Harding

Our aim was to compare the effects of short (4 h) and prolonged (24 h) periods of reduced uterine blood flow (RUBF) on fetal and placental uptake of O2, glucose, and lactate. In pregnant sheep, uterine and umbilical blood flows were measured under normal conditions and after 4 and 24 h of RUBF. A 50% reduction in uterine blood flow caused a 56% reduction in fetal arterial O2 saturation (SaO2). Umbilical blood flow increased from 325 +/- 33 to 378 +/- 32 ml.min-1.kg-1 (P < 0.05) after 4 h but was not different from pre-RUBF values after 24 h. O2 uptake by the gravid uterus was not altered by RUBF, due to an increase (84%) in uterine O2 extraction. Similarly, uteroplacental and fetal O2 consumptions and fetal glucose uptake were not affected by RUBF, whereas uteroplacental glucose uptake was significantly reduced after 4 h (by 42%) and 24 h (by 58%) of RUBF. Fetal lactate uptake was greatly reduced from 78.7 +/- 15.5 to -167 +/- 57 mumol.min-1.kg-1 after 4 h and to -198 +/- 80 mumol.min-1.kg-1 after 24 h of RUBF; negative values indicate placental lactate uptake from the fetal circulation. Thus, although RUBF significantly reduced fetal SaO2, fetal and uteroplacental O2 consumptions did not change. In addition, although fetal glucose uptake was not altered by RUBF, during RUBF the placenta became a major site of lactate clearance from the fetal circulation.


2007 ◽  
Vol 103 (6) ◽  
pp. 2018-2025 ◽  
Author(s):  
D. Fischer ◽  
P. Arbeille ◽  
J. K. Shoemaker ◽  
D. D. O'Leary ◽  
R. L. Hughson

This study tested the hypothesis that cardiovascular and hormonal responses to lower body negative pressure (LBNP) would be altered by 4-h head down bed rest (HDBR) in 11 healthy young men. In post-HDBR testing, three subjects failed to finish the protocol due to presyncopal symptoms, heart rate was increased during LBNP compared with pre-HDBR, mean arterial blood pressure was elevated at 0, −10, and −20 mmHg and reduced at −40 mmHg, central venous pressure (CVP) and cardiac stroke volume were reduced at all levels of LBNP. Plasma concentrations of renin, angiotensin II, and aldosterone were significantly lower after HDBR. Renin and angiotensin II increased in response to LBNP only post-HDBR. There was no effect of HDBR or LBNP on norepinephrine while epinephrine tended to increase at −40 mmHg post-HDBR ( P = 0.07). Total blood volume was not significantly reduced. Splanchnic blood flow taken from ultrasound measurement of the portal vein was higher at each level of LBNP post-compared with pre-HDBR. The gain of the cardiopulmonary baroreflex relating changes in total peripheral resistance to CVP was increased after HDBR, but splanchnic vascular resistance was actually reduced. These results are consistent with our hypothesis and suggest that cardiovascular instability following only 4-h HDBR might be related to altered hormonal and/or neural control of regional vascular resistance. Impaired ability to distribute blood away from the splanchnic region was associated with reduced stroke volume, elevated heart rate, and the inability to protect mean arterial pressure.


1992 ◽  
Vol 263 (1) ◽  
pp. H188-H197 ◽  
Author(s):  
R. R. Magness ◽  
C. R. Rosenfeld ◽  
D. J. Faucher ◽  
M. D. Mitchell

The ovine and human uteroplacental vascular beds are more refractory to angiotensin II (ANG II)-induced vasoconstriction than the systemic vasculature. ANG II increases in vitro prostacyclin (PGI2) production by uterine but not omental arteries from pregnant sheep. Thus vasodilator prostaglandins may account for this difference in vascular responsiveness. We measured uterine and systemic eicosanoid production and hemodynamic responses in pregnant sheep before and during intravenous ANG II (1.15 and 11.5 micrograms/min). ANG II caused dose-related increases in arterial pressure and systemic and uterine vascular resistance (P less than 0.05). PGI2 metabolite (6-keto-PGF1 alpha) in the uterine vein rose from 166 +/- 70 (SE) to 223 +/- 114 and 631 +/- 323 pg/ml, respectively (P less than 0.05), and arterial levels increased from 67 +/- 24 to 145 +/- 78 and 312 +/- 173 pg/ml, respectively (P less than 0.05). Basal uterine venoarterial differences of 6-keto-PGF1 alpha were 99 +/- 43 pg/ml and increased during 11.5 micrograms ANG II/min to 295 +/- 181 pg/ml (P less than 0.05) but not during 1.15 micrograms/min (64 +/- 30 pg/ml). Responses were similar in gravid and nongravid uterine horns. Unilateral uterine prostaglandin inhibition with indomethacin did not alter basal uterine blood flow or systemic responses to ANG II (0.573-11.5 micrograms/min); however, ipsilateral uterine prostaglandin production fell and uterine vasoconstrictor responses increased (P less than 0.05). During ovine pregnancy ANG II increases uterine PGI2 production. PGI2 appears in part to attenuate ANG II-induced uterine vasoconstriction.


Sign in / Sign up

Export Citation Format

Share Document