Tumor-promoting phorbol esters inhibit monocyte adherence to endothelial cells

1989 ◽  
Vol 66 (1) ◽  
pp. 437-442 ◽  
Author(s):  
D. W. Kamp ◽  
K. D. Bauer ◽  
D. B. Rubin ◽  
M. M. Dunn

Monocyte adherence to endothelial cells (EC) is an important event in the development of a monocytic inflammatory response, yet the effects of inflammatory mediators on monocyte adherence to EC are not well described. We compared the effects of phorbol esters known to activate protein kinase C, including phorbol myristate acetate (PMA) and phorbol 12,13-dibutyrate (PDA), on monocyte adherence to bovine aortic EC. Human monocytes (purity 90 +/- 1% SE) were isolated by centrifugal elutriation to obtain monocytes not previously exposed to a surface. Kinetic studies revealed that 51Cr-labeled monocyte adherence to EC reached a plateau after a 45-min incubation. Concentrations of PMA between 10 and 1,000 ng/ml significantly decreased monocyte adherence to EC (26 +/- 10 and 35 +/- 8% decrease compared with control, respectively). Concentrations of PDA of 100 and 1,000 ng/ml had a similar inhibitory effect. In contrast, the chemotactic stimulus, zymosan-activated serum, significantly increased monocyte adherence (40 +/- 14% increase compared with control). Thus inflammatory stimuli have different effects on the adhesive interaction of monocytes to EC. This may provide a mechanism to selectively modulate monocyte egress from the circulation into extravascular inflammatory sites.

1996 ◽  
Vol 270 (2) ◽  
pp. H620-H627 ◽  
Author(s):  
T. Asai ◽  
L. M. Shuba ◽  
D. J. Pelzer ◽  
T. F. McDonald

Active and inactive phorbol esters were applied to guinea pig ventricular myocytes to study the responses of L-type Ca2+ (ICa,L) and L-type Na+ (INa,L) currents. Phorbol 12-myristate 13-acetate (PMA) (10-100 rM) never stimulated ICa,L or INa,L and frequently depressed them by 5-30% in a voltage-independent manner. However, the phorbol ester consistently activated delayed-rectifying K+ (IK) and Cl- currents. The inhibition of ICa,L occurred approximately 3 times faster than comonitored stimulation of IK, and ICa,L and INa,L were unaffected by two interventions that suppressed IK stimulation [pretreatment with 50 microM 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and dialysis with pCa 11 versus standard pCa 9 solution]. Inactive phorbol esters 4 alpha-phorbol 12,13-didecanoate (alpha-PDD) and 4 alpha-phorbol had little effect on IK, but alpha-PDD had a PMA-like inhibitory effect on Ca2+ channel currents. We conclude that, unlike the stimulation of IK by PMA, inhibition of Ca2+ channel current by phorbol esters is a protein kinase C-independent action.


1987 ◽  
Vol 253 (1) ◽  
pp. H205-H209 ◽  
Author(s):  
G. F. Leatherman ◽  
D. Kim ◽  
T. W. Smith

Phorbol esters are potent tumor promoters that have been widely used in studies of transmembrane signaling because of their ability to activate protein kinase C. To study the effect of phorbol esters (and indirectly, the role of protein kinase C) on cardiac muscle contractility, we examined the effects of phorbol myristate acetate (PMA) on contractile state, transmembrane 45Ca fluxes, and cytosolic free Ca concentration ([Ca]i) using spontaneously contracting cultured chick ventricular cells. PMA produced a concentration- and time-dependent decrease in the amplitude of cell motion [half maximum inhibitory concentration (IC50) = 130 nM] with maximal effect (54 +/- 5% of control) observed at 1 microM. PMA (1 microM) reduced 45Ca uptake rate by 16 +/- 4% (P less than 0.05) and the size of the rapidly exchangeable Ca pool by 11 +/- 2% (P less than 0.05) but did not alter the 45Ca efflux rate. In fura-2-loaded cells, PMA produced a decrease in [Ca]i from 96 +/- 7 to 72 +/- 5 nM (mean +/- SE; P less than 0.05) with a time course similar to that of alteration in contractile amplitude. PMA had no effect on cellular Na content. Phorbol didecanoate (1 microM), a phorbol diester that does not activate protein kinase C, produced no significant changes in contractile amplitude, 45Ca fluxes, or [Ca]i. These results indicate that PMA influences transsarcolemmal Ca uptake, and thus the excitation-contraction process, and suggest that protein kinase C may modulate myocardial Ca homeostasis and contractile state.


1985 ◽  
Vol 101 (3) ◽  
pp. 1052-1058 ◽  
Author(s):  
J M Robinson ◽  
J A Badwey ◽  
M L Karnovsky ◽  
M J Karnovsky

The ability of phorbol derivatives to function as stimulating agents for superoxide (O2-) release by guinea pig neutrophils has been evaluated and compared to the known ability of each compound to activate protein kinase C. Those that activate the kinase also stimulate O2- release, while those that are inactive with respect to the kinase have no effect on O2- release. The same correlation was observed with respect to the ability of phorbol esters to induce morphological changes in neutrophils, i.e., vesiculation and reduction in granule content. Certain phenothiazines and naphthalene sulfonamides that are known antagonists of calcium-binding proteins blocked both phorbol ester-induced O2- release and morphological changes in these cells.


1989 ◽  
Vol 256 (2) ◽  
pp. G356-G363 ◽  
Author(s):  
T. Chiba ◽  
S. K. Fisher ◽  
B. W. Agranoff ◽  
T. Yamada

In previous studies we demonstrated that parietal cell stimulation with gastrin and carbamoylcholine (carbachol) is accompanied by increased turnover of membrane inositol phospholipids. We conducted the present studies to examine whether membrane-associated protein kinase C activity is enhanced as a consequence of these events and to explore the role of this enzyme in regulating parietal cell function. We observed that carbachol and gastrin dose dependently increased membrane-associated protein kinase C activity while histamine did not. Furthermore, compounds such as phorbol esters and diacylglycerol, which are known to be direct stimulants of protein kinase C activity, also stimulated parietal cell aminopyrine uptake. In contrast, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate and the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol inhibited both aminopyrine uptake and membrane inositol phospholipid turnover in parietal cells induced by carbachol and gastrin. The inhibitory effect appeared to result from reduction in the quantity of muscarinic and gastrin receptors without alterations in their specific affinities. These data suggest that protein kinase C mediates stimulation of parietal cells by gastrin and carbachol but also activates an autoregulatory mechanism via downregulation of muscarinic and gastrin receptors.


1989 ◽  
Vol 67 (2) ◽  
pp. 556-562 ◽  
Author(s):  
D. W. Kamp ◽  
K. D. Bauer ◽  
A. Knap ◽  
M. M. Dunn

Leukocyte adherence to endothelial cells (EC) is an important early event in inflammatory responses, which are often characterized by a predominance of either neutrophils (PMN) or monocytes. However, there is little information concerning the molecular events important in leukocyte adherence to EC. Intracellular activation of protein kinase C and the calcium-second messenger system leads to the stimulation of a number of important functions in PMN and monocytes. We compared the effects of members of these pathways on human PMN and monocyte adherence to cultured bovine aortic EC. We observed that phorbol myristate acetate, phorbol, 12,13-dibutyrate, L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol, and ionomycin each induced significant dose-dependent increases in PMN adherence to EC monolayers. In contrast, similar concentrations of each of these agents induced significant decreases in EC adherence of monocytes enriched by countercurrent centrifugal elutriation. Separate experiments determined that the differences in PMN and monocyte adherence to EC were not related to differences in oxidant production because 1) phorbol myristate acetate and L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol caused similar marked increases in both PMN and monocyte superoxide anion and hydrogen peroxide production and 2) ionomycin, which had opposing effects on PMN and monocyte adherence, had no effect on PMN and monocyte superoxide anion or hydrogen peroxide release. We conclude that activators of protein kinase C and the Ca-second messenger pathway have opposite effects on PMN and monocyte adherence to EC and that these effects are mediated by O2 radical-independent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 256 (2) ◽  
pp. 677-680 ◽  
Author(s):  
H Sugiya ◽  
J W Putney

Substance P-induced inositol trisphosphate (InsP3) formation was inhibited by 1 microM-4 beta-phorbol 12,13-dibutyrate (PDBu) in rat parotid acinar cells. The inhibitory effect of PDBu was reversed by the protein kinase C inhibitors H-7 or K252a. Substance P also elicits a persistent desensitization of subsequent substance P-stimulated InsP3 formation. However, this desensitization was not inhibited by H-7. In addition, H-7 had no effect on the time course of substance P-induced InsP3 formation. These results suggest that, although activation of protein kinase C by phorbol esters can inhibit the substance P receptor-linked phospholipase C pathway, this mechanism apparently plays little, if any, role in regulating this system after activation by substance P.


1993 ◽  
Vol 292 (3) ◽  
pp. 759-765 ◽  
Author(s):  
P Raynal ◽  
F Hullin ◽  
J M F Ragab-Thomas ◽  
J Fauvel ◽  
H Chap

In vitro phosphorylation of annexin 1 by purified rat brain protein kinase C (PKC) has been studied in the presence of annexin 5, which is not a substrate for PKC. Annexin 5 promoted a dose-dependent inhibition of annexin 1 phosphorylation, which could be overcome by increasing the concentration of phosphatidylserine (PtdSer). In addition, a close relationship was found between the amount of PtdSer uncovered by annexin 5 and the residual phosphorylation of annexin 1. These data fit with the ‘surface depletion model’ explaining the antiphospholipase activity of annexins. In order to check the possibility that the in vitro effect of annexin 5 could be of some physiological relevance, annexins 1, 2, and 5, as well as the light chain of calpactin 1 (p11), have been quantified in human endothelial cells by measuring the radioactivity bound to the proteins after Western blotting with specific antibodies and 125I-labelled secondary antibody. Our data indicate that annexins 1 and 5, PKC and PtdSer are present in human endothelial cells in relative amounts very similar to those used in vitro under conditions permitting the detection of the inhibitory effect of annexin 5. Since annexin 1 remained refractory to PKC-dependent phosphorylation in intact cells, we suggest that annexin 5 might exert its inhibitory effect towards PKC in vivo, provided that its binding to phospholipids can occur at physiological (micromolar) concentrations of Ca2+. This was previously shown to occur in vitro using phosphatidylethanolamine/phosphatidic acid vesicles [Blackwood and Ernst (1990) Biochem. J. 266, 195-200]. Using identical assay conditions, which also allowed expression of PKC activity, annexin 5 again inhibited annexin 1 phosphorylation without interfering with PKC autophosphorylation. These data suggest that annexins 1 and 5 might interact with each other on the lipid surface, resulting in a specific inhibition of annexin 1 phosphorylation by PKC. Whether a similar mechanism also occurs in vivo remains to be determined.


1999 ◽  
Vol 338 (2) ◽  
pp. 471-478 ◽  
Author(s):  
Marianne J. RATCLIFFE ◽  
Caroline SMALES ◽  
James M. STADDON

Inflammatory mediators such as histamine and thrombin increase the tight-junction permeability of endothelial cells. Tight-junction permeability may be independently controlled, but is dependent on the adherens junction, where adhesion is achieved through homotypic interaction of cadherins, which in turn are associated with cytoplasmic proteins, the catenins. p120, also termed p120cas/p120ctn, and its splice variant, p100, are catenins. p120, originally discovered as a substrate of the tyrosine kinase Src, is also a target for a protein kinase C-stimulated pathway in epithelial cells, causing its serine/threonine dephosphorylation. The present study shows that pharmacological activation of protein kinase C stimulated a similar pathway in endothelial cells. Activation of receptors for agents such as histamine (H1), thrombin and lysophosphatidic acid in the endothelial cells also caused serine/threonine dephosphorylation of p120 and p100, suggesting physiological relevance. However, protein kinase C inhibitors, although blocking the effect of pharmacological activation of protein kinase C, did not block the effects due to receptor activation. Calcium mobilization and the myosin-light-chain-kinase pathway do not participate in p120/p100 signalling. In conclusion, endothelial cells possess protein kinase C-dependent and -independent pathways regulating p120/p100 serine/threonine phosphorylation. These data describe a new connection between inflammatory agents, receptor-stimulated signalling and pathways potentially influencing intercellular adhesion in endothelial cells.


1985 ◽  
Vol 232 (2) ◽  
pp. 609-611 ◽  
Author(s):  
N G Anderson ◽  
P J Hanson

The relative potency with which phorbol esters inhibited histamine-stimulated aminopyrine accumulation (an index of acid secretion) paralleled that which has been established for the activation of purified protein kinase C. The inhibitory effect of 1-oleoyl-2-acetylglycerol on aminopyrine accumulation stimulated by various secretagogues was similar to that of 12-O-tetradecanoylphorbol 13-acetate. Protein kinase C activity was present in a parietal-cell-enriched fraction. In conclusion, protein kinase C could be involved in mechanisms regulating gastric acid secretion.


1992 ◽  
Vol 263 (2) ◽  
pp. F293-F300 ◽  
Author(s):  
B. Ellis ◽  
E. E. Schneeberger ◽  
C. A. Rabito

Phorbol 12-myristate 13-acetate (PMA) decreases the tight junction conductance (TJC) during the reorganization of LLC-PK1A monolayers, but has the opposite effect in LLC-PK1B4, MDCK, and MDCK4 cells. Because no protein synthesis was required for the effects of PMA on the TJC of LLC-PK1A monolayers, we conclude that the regulation of the tight junction by protein kinase C (PKC) is a posttranslational event. In LLC-PK1A monolayers with existing tight junctions, PMA produced an initial increase in the TJC that reverted later to control values despite the continuous presence of PMA and cycloheximide. The inhibitory effect of PMA on the other cell lines was not revertible. A downregulation of total PKC activity and phorbol ester receptors was only observed during the reorganization of LLC-PK1A monolayers. PMA further increases this downregulation. This indicates that the peculiar response to PMA observed in LLC-PK1A monolayers is the result of two concurrent events: 1) the early activation of the enzyme just before the reorganization of the tight junctions begin, and 2) its late downregulation induced after prolonged exposure to phorbol esters. We conclude that PKC regulates the development of the occluding junctions, but through different mechanisms dependent on the characteristics of the cells.


Sign in / Sign up

Export Citation Format

Share Document