Pulmonary hemodynamic response to exercise in subjects with prior high-altitude pulmonary edema

1996 ◽  
Vol 81 (2) ◽  
pp. 911-921 ◽  
Author(s):  
M. W. Eldridge ◽  
A. Podolsky ◽  
R. S. Richardson ◽  
D. H. Johnson ◽  
D. R. Knight ◽  
...  

Individuals with a prior history of (susceptible to high altitude pulmonary edema (HAPE-S) have high resting pulmonary arterial pressures, but little data are available on their vascular response to exercise. We studied the pulmonary vascular response to exercise in seven HAPE-S and nine control subjects at sea level and at 3,810 m altitude. At each location, both normoxic (inspired PO2 = 148 Torr) and hypoxic (inspired PO2 = 91 Torr) studies were conducted. Pulmonary hemodynamic measurements included pulmonary arterial and pulmonary arterial occlusion pressures. A multiple regression analysis demonstrated that the pulmonary arterial pressure reactivity to exercise was significantly greater in the HAPE-S group. This reactivity was not influenced by altitude or oxygenation, implying that the response was intrinsic to the pulmonary circulation. Pulmonary arterial occlusion pressure reactivity to exercise was also greater in the HAPE-S group, increasing with altitude but independent of oxygenation. These findings suggest an augmented flow-dependent pulmonary vasoconstriction and/or a reduced vascular cross-sectional area in HAPE-S subjects.

2011 ◽  
Vol 179 (2-3) ◽  
pp. 294-299 ◽  
Author(s):  
Rémi Mounier ◽  
Aimé Amonchot ◽  
Nicolas Caillot ◽  
Cécile Gladine ◽  
Bernard Citron ◽  
...  

2015 ◽  
Vol 118 (3) ◽  
pp. 292-298 ◽  
Author(s):  
Sandro Altamura ◽  
Peter Bärtsch ◽  
Christoph Dehnert ◽  
Marco Maggiorini ◽  
Günter Weiss ◽  
...  

Low iron availability enhances hypoxic pulmonary vasoconstriction (HPV). Considering that reduced serum iron is caused by increased erythropoiesis, insufficient reabsorption, or elevated hepcidin levels, one might speculate that exaggerated HPV in high-altitude pulmonary edema (HAPE) is related to low serum iron. To test this notion we measured serum iron and hepcidin in blood samples obtained in previously published studies at low altitude and during 2 days at 4,559 m (HA1, HA2) from controls, individuals with HAPE, and HAPE-susceptible individuals where prophylactic dexamethasone and tadalafil prevented HAPE. As reported, at 4,559 m pulmonary arterial pressure was increased in healthy volunteers but reached higher levels in HAPE. Serum iron levels were reduced in all groups at HA2. Hepcidin levels were reduced in all groups at HA1 and HA2 except in HAPE, where hepcidin was decreased at HA1 but unexpectedly high at HA2. Elevated hepcidin in HAPE correlated with increased IL-6 at HA2, suggesting that an inflammatory response related to HAPE contributes to increased hepcidin. Likewise, platelet-derived growth factor, a regulator of hepcidin, was increased at HA1 and HA2 in controls but not in HAPE, suggesting that hypoxia-controlled factors that regulate serum iron are inappropriately expressed in HAPE. In summary, we found that HAPE is associated with inappropriate expression of hepcidin without inducing expected changes in serum iron within 2 days at HA, likely due to too short time. Although hepcidin expression is uncoupled from serum iron availability and hypoxia in individuals developing HAPE, our findings indicate that serum iron is not related with exaggerated HPV.


2020 ◽  
Vol 128 (3) ◽  
pp. 514-522
Author(s):  
A. Mulchrone ◽  
H. Moulton ◽  
M. W. Eldridge ◽  
N. C. Chesler

High-altitude pulmonary edema (HAPE), a reversible form of capillary leak, is a common consequence of rapid ascension to high altitude and a major cause of death related to high-altitude exposure. Individuals with a prior history of HAPE are more susceptible to future episodes, but the underlying risk factors remain uncertain. Previous studies have shown that HAPE-susceptible subjects have an exaggerated pulmonary vasoreactivity to acute hypoxia, but incomplete data are available regarding their vascular response to exercise. To examine this, seven HAPE-susceptible subjects and nine control subjects (HAPE-resistant) were studied at rest and during incremental exercise at sea level and at 3,810 m altitude. Studies were conducted in both normoxic (inspired Po2 = 148 Torr) and hypoxic (inspired Po2 = 91 Torr) conditions at each location. Here, we report an expanded analysis of previously published data, including a distensible vessel model that showed that HAPE-susceptible subjects had significantly reduced small distal artery distensibility at sea level compared with HAPE-resistant control subjects [0.011 ± 0.001 vs. 0.021 ± 0.002 mmHg−1; P < 0.001). Moreover, HAPE-susceptible subjects demonstrated constant distensibility over all conditions, suggesting that distal arteries are maximally distended at rest. Consistent with having increased distal artery stiffness, HAPE-susceptible subjects had greater increases in pulmonary artery pulse pressure with exercise, which suggests increased proximal artery stiffness. In summary, HAPE-susceptible subjects have exercise-induced increases in proximal artery stiffness and baseline increases in distal artery stiffness, suggesting increased pulsatile load on the right ventricle. NEW & NOTEWORTHY In comparison to subjects who appear resistant to high-altitude pulmonary edema, those previously symptomatic show greater increases in large and small artery stiffness in response to exercise. These differences in arterial stiffness may be a risk factor for the development of high-altitude pulmonary edema or evidence that consequences of high-altitude pulmonary edema are long-lasting after return to sea level.


1996 ◽  
Vol 35 (4) ◽  
pp. 257-260 ◽  
Author(s):  
Yunden DROMA ◽  
Ge RI-LI ◽  
Masao TANAKA ◽  
Tomonobu KOIZUMI ◽  
Masayuki HANAOKA ◽  
...  

2018 ◽  
Vol 3 (3) ◽  
pp. 224
Author(s):  
Kaushik Halder ◽  
RK Gupta ◽  
Anjana Pathak ◽  
Montu Saha

<p>The study was aimed to evaluate and compare resting and exercise induced metabolic responses between acclimatized high altitude pulmonary edema (HAPE) susceptible (HAPE-s) and HAPE resistance (HAPE-r) volunteers at sea level. A group of 14 Indian soldiers volunteered for this study, divided into two groups, (i) HAPE-s, with past history of HAPE [n<sub>1</sub> = 7; age = 33.3 ± 4.5 (M ± SD)] and (ii) HAPE-r, with prior history of repeated exposure to high altitude and without suffering HAPE [n<sub>2</sub> = 7; age = 31.9 ± 4.2 (M ± SD)]. Respiratory frequency (f<sub>R</sub>), tidal volume (<sub>T</sub>), minute ventilation (<sub>E</sub>), oxygen consumption (O<sub>2</sub>), carbon dioxide output (CO<sub>2</sub>), heart rate (HR) and respiratory quotient (RQ) were recorded on all the volunteers during resting and exercise conditions. Ventilatory equivalent for oxygen (EqO<sub>2</sub>) and oxygen pulse (O<sub>2</sub>P) were calculated. Significant differences were observed between HAPE-s and HAPE-r volunteers in f<sub>Rrest </sub>(25.3% higher), O<sub>2</sub>P<sub>rest </sub>(23.7% lower), <sub>Emax</sub> (50.9% lower) (all P&lt;0.05), f<sub>Rmax </sub>(55.7% lower), O<sub>2max </sub>(55.5% lower), O<sub>2</sub>P<sub>max </sub>(34.2% lower) (all P&lt;0.01) and CO<sub>2max</sub> (42.1% lower, P&lt;0.001). Rest of the parameters did not show any significant differences between the study groups. The study revealed that resting and exercise induced metabolic responses of HAPE-r volunteers was better as compared to acclimatized HAPE-s volunteers at sea level.</p>


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S64-S64
Author(s):  
C Eichstaedt ◽  
H Mairbäurl ◽  
J Song ◽  
N Benjamin ◽  
C Fischer ◽  
...  

Author(s):  
Christina Eichstaedt ◽  
Heimo Mairbäurl ◽  
Jie Song ◽  
Nicola Benjamin ◽  
Christine Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document