inappropriate expression
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 22 (24) ◽  
pp. 13430
Author(s):  
Artem A. Ilyin ◽  
Anastasia D. Stolyarenko ◽  
Nikolay Zenkin ◽  
Mikhail S. Klenov

Insertions of transposable elements (TEs) in eukaryotic genomes are usually associated with repressive chromatin, which spreads to neighbouring genomic sequences. In ovaries of Drosophila melanogaster, the Piwi-piRNA pathway plays a key role in the transcriptional silencing of TEs considered to be exerted mostly through the establishment of H3K9me3 histone marks recruiting Heterochromatin Protein 1a (HP1a). Here, using RNA-seq, we investigated the expression of TEs and the adjacent genomic regions upon Piwi and HP1a germline knockdowns sharing a similar genetic background. We found that the depletion of Piwi and HP1a led to the derepression of only partially overlapping TE sets. Several TEs were silenced predominantly by HP1a, whereas the upregulation of some other TEs was more pronounced upon Piwi knockdown and, surprisingly, was diminished upon a Piwi/HP1a double-knockdown. We revealed that HP1a loss influenced the expression of thousands of protein-coding genes mostly not adjacent to TE insertions and, in particular, downregulated a putative transcriptional factor required for TE activation. Nevertheless, our results indicate that Piwi and HP1a cooperatively exert repressive effects on the transcription of euchromatic loci flanking the insertions of some Piwi-regulated TEs. We suggest that this mechanism controls the silencing of a small set of TE-adjacent tissue-specific genes, preventing their inappropriate expression in ovaries.


Reproduction ◽  
2021 ◽  
Author(s):  
Kacie A Norton ◽  
Ross Humphreys ◽  
Chelsey Weatherill ◽  
Kevin Duong ◽  
Vivian V Nguyen ◽  
...  

Defects in spermatogenesis are an important cause of male infertility. Multiple aspects of spermatogenesis are controlled by chromatin remodelers, including regulating transcription. We previously described mutations in chromatin remodeling gene Cecr2 that resulted in the lethal neural tube defect exencephaly in most mutant mice, and subfertility in mice that were non-penetrant for exencephaly. Here, we show that the severity of male subfertility is dependent on age. Cecr2GT/Del males contain two mutant alleles, one of which is hypomorphic and therefore produces a small amount of protein. These males sire the fewest pups just after sexual maturity (88% fewer than Cecr2+/+ at P42-60) but improve with age (49% fewer than Cecr2+/+ at P81-100), although never completely recovering to Cecr2+/+ (wild type) levels. When young, they also have defects in testis histology, in vivo fertilization frequency, sperm number and motility, and testis weight that show similar improvement with age. Immunostaining of staged seminiferous tubules showed CECR2 in type A, In and B spermatogonia, and less in preleptotene and leptotene spermatocytes. Histological defects were first apparent in Cecr2GT/Del testes at P24, and RNA-seq analysis revealed 387 differentially expressed genes. This included 66 genes on the X chromosome (almost double the number on any other chromosome), all more highly expressed in Cecr2GT/Del testes. This inappropriate expression of X chromosome genes could be caused by a failure of effective meiotic sex chromosome inactivation. We identify several abnormally expressed genes that may contribute to defects in spermatogenesis at P24. Our results support a role for Cecr2 in juvenile spermatogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ciorana Roman-Ortiz ◽  
Jessica A. Guevara ◽  
Roger L. Clem

AbstractBehaviors central to the procurement and consumption of food are among those most fundamental to survival, but their inappropriate expression can lead to overeating and obesity. Nevertheless, we have a poor understanding of circuits that promote feeding independent of physiological demand. Here we demonstrate that activation of basal forebrain (BF) GABAergic neurons results in consumption of food as well as non-food items in well-fed mice, and performance of fictive eating in the absence of ingestible materials. In addition, stimulation of these cells disrupts defensive threat responses and elicits reward-like motivational effects. Finally, BF GABAergic activity triggers skilled predatory attacks of live prey and prey-like objects, but not social targets. These effects were entirely recapitulated by selective stimulation of BF GABAergic projections to the periaqueductal gray (PAG). Our results outline a potent circuit mechanism for increased feeding through recruitment of distinct but synergistic behaviors, and add to growing evidence that PAG is an important integrator of feeding-related activity.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2826
Author(s):  
Manuel Franco ◽  
Juana-María Vivo

The burgeoning advances in high-throughput technologies have posed a great challenge to the identification of novel biomarkers for diagnosing, by contemporary models and methods, through bioinformatics-driven analysis. Diagnostic performance metrics such as the partial area under the ROC (pAUC) indexes exhibit limitations to analysing genomic data. Among other issues, the inability to differentiate between biomarkers whose ROC curves cross each other with the same pAUC value, the inappropriate expression of non-concave ROC curves, and the lack of a convenient interpretation, restrict their use in practice. Here, we have proposed the fitted partial area index (FpAUC), which is computable through an algorithm valid for any ROC curve shape, as an alternative performance summary for the evaluation of highly sensitive biomarkers. The proposed approach is based on fitter upper and lower bounds of the pAUC in a high-sensitivity region. Through variance estimates, simulations, and case studies for diagnosing leukaemia, and ovarian and colon cancers, we have proven the usefulness of the proposed metric in terms of restoring the interpretation and improving diagnostic accuracy. It is robust and feasible even when the ROC curve shows hooks, and solves performance ties between competitive biomarkers.


Author(s):  
Jing Yang ◽  
Mengmeng Liu ◽  
Dongchun Hong ◽  
Musheng Zeng ◽  
Xing Zhang

Cellular senescence occurs in proliferating cells as a consequence of various triggers including telomere shortening, DNA damage, and inappropriate expression of oncogenes. The senescent state is accompanied by failure to reenter the cell cycle under mitotic stimulation, resistance to cell death and enhanced secretory phenotype. A growing number of studies have convincingly demonstrated a paradoxical role for spontaneous senescence and therapy-induced senescence (TIS), that senescence may involve both cancer prevention and cancer aggressiveness. Cellular senescence was initially described as a physiological suppressor mechanism of tumor cells, because cancer development requires cell proliferation. However, there is growing evidence that senescent cells may contribute to oncogenesis, partly in a senescence-associated secretory phenotype (SASP)-dependent manner. On the one hand, SASP prevents cell division and promotes immune clearance of damaged cells, thereby avoiding tumor development. On the other hand, SASP contributes to tumor progression and relapse through creating an immunosuppressive environment. In this review, we performed a review to summarize both bright and dark sides of senescence in cancer, and the strategies to handle senescence in cancer therapy were also discussed.


2021 ◽  
Author(s):  
Megan A Gura ◽  
Sona Relovska ◽  
Kimberly M Abt ◽  
Kimberly A Seymour ◽  
Tong Wu ◽  
...  

Establishment of a healthy ovarian reserve is contingent upon numerous regulatory pathways during embryogenesis. Previously, mice lacking TBP-associated factor 4b (Taf4b) were shown to exhibit a diminished ovarian reserve. However, potential oocyte-intrinsic functions of TAF4b have not been examined. Here we use a combination of gene expression profiling and chromatin mapping to characterize the TAF4b gene regulatory network in mouse oocytes. We find that Taf4b-deficient oocytes display inappropriate expression of meiotic, chromatin, and X-linked genes, and unexpectedly we found a connection with Turner Syndrome pathways. Using Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we observed TAF4b enrichment at genes involved in meiosis and DNA repair, some of which are differentially expressed in Taf4b-deficient oocytes. Interestingly, TAF4b target genes were enriched for Sp/KLF family motifs rather than TATA-box, suggesting an alternate mode of promoter interaction. Together, our data connects several gene regulatory nodes that contribute to the ovarian reserve.


2021 ◽  
Author(s):  
Ciorana Roman-Ortiz ◽  
Jessica A. Guevara ◽  
Roger L. Clem

Abstract Behaviors central to the procurement and consumption of food are among those most fundamental to survival, but their inappropriate expression can lead to overeating and obesity. Nevertheless, we have a poor understanding of circuits that promote feeding independent of physiological demand. Here we demonstrate that activation of basal forebrain (BF) GABAergic neurons results in consumption of food as well as non-food items in well-fed mice, and performance of fictive eating in the absence of ingestible materials. In addition, stimulation of these cells disrupts defensive threat responses and elicits reward-like motivational effects. Finally, BF GABAergic activity triggers skilled predatory attack of live prey and prey-like objects, but not social targets. These effects were entirely recapitulated by selective stimulation of BF GABAergic projections to the periacqueductual gray (PAG). Our results outline a potent circuit mechanism for increased feeding through recruitment of distinct but synergistic behaviors, and add to growing evidence that PAG is an important integrator of feeding-related activity.


2021 ◽  
Vol 53 (04) ◽  
pp. 211-218
Author(s):  
Yizhi Ding ◽  
Shaoqin Yang ◽  
Hua Gao

AbstractThyroid-associated ophthalmopathy (TAO) is a potentially sight-threatening ocular disease. About 3–5% of patients with TAO have severe disease with intense pain, inflammation, and sight-threatening corneal ulceration or compressive optic neuropathy. The current treatments of TAO are often suboptimal, mainly because the existing therapies do not target the pathogenesis of the disease. TAO mechanism is unclear. Ocular fibrocytes express relatively high levels of the functional TSH receptor (TSHR), and many indirect evidences support its participation. Over expression of insulin-like growth factor-1 receptor (IGF-IR) in fibroblasts, leading to inappropriate expression of inflammatory factors, production of hyaluronic acid and cell activation in orbital fibroblasts are also possible mechanisms. IGF-1R and TSHR form a physical and functional signaling complex. Inhibition of IGF-IR activity leads to the attenuation of signaling initiated at either receptor. Teprotumumab (TMB) is a human immunoglobulin G1 monoclonal antibody, binding to IGF-IR. Recently two TMB clinical trials had been implemented in TAO patients, indicating dramatic reductions in disease activity and severity, which approved its use for the treatment of TAO in the US. This review summarizes the treatments of TAO, focusing on the pathogenesis of IGF-1R in TAO and its application prospects.


Development ◽  
2021 ◽  
Vol 148 (4) ◽  
pp. dev192443
Author(s):  
Philipp M. Tschaikner ◽  
Dominik Regele ◽  
Ruth Röck ◽  
Willi Salvenmoser ◽  
Dirk Meyer ◽  
...  

ABSTRACTHedgehog (Hh) ligands act as morphogens to direct patterning and proliferation during embryonic development. Protein kinase A (PKA) is a central negative regulator of Hh signalling, and in the absence of Hh ligands, PKA activity prevents inappropriate expression of Hh target genes. The orphan G-protein-coupled receptor Gpr161 contributes to the basal Hh repression machinery by activating PKA. Gpr161 acts as an A-kinase-anchoring protein, and is itself phosphorylated by PKA, but the functional significance of PKA phosphorylation of Gpr161 in the context of Hh signalling remains unknown. Here, we show that loss of Gpr161 in zebrafish leads to constitutive activation of medium and low, but not maximal, levels of Hh target gene expression. Furthermore, we find that PKA phosphorylation-deficient forms of Gpr161, which we show directly couple to Gαs, display an increased sensitivity to Shh, resulting in excess high-level Hh signalling. Our results suggest that PKA feedback-mediated phosphorylation of Gpr161 may provide a mechanism for fine-tuning Gpr161 ciliary localisation and PKA activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guo-Liang Chew ◽  
Marie Bleakley ◽  
Robert K. Bradley ◽  
Harmit S. Malik ◽  
Steven Henikoff ◽  
...  

AbstractShort H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization. We posit that short H2As are a class of “ready-made” oncohistones, whose inappropriate expression contributes to chromatin dysfunction in cancer.


Sign in / Sign up

Export Citation Format

Share Document