Inhibition of allergic airway responses by inhaled low-molecular-weight heparins: molecular-weight dependence

1998 ◽  
Vol 84 (1) ◽  
pp. 222-228 ◽  
Author(s):  
José Martinez-Salas ◽  
Richard Mendelssohn ◽  
William M. Abraham ◽  
Bernard Hsiao ◽  
Tahir Ahmed

Martinez-Salas, José, Richard Mendelssohn, William M. Abraham, Bernard Hsiao, and Tahir Ahmed. Inhibition of allergic airway responses by inhaled low-molecular-weight heparins: molecular-weight dependence. J. Appl. Physiol. 84(1): 222–228, 1998.—Inhaled heparin prevents antigen-induced bronchoconstriction and inhibits anti-immunoglobulin E-mediated mast cell degranulation. We hypothesized that the antiallergic action of heparin may be molecular weight dependent. Therefore, we studied the effects of three different low-molecular-weight fractions of heparin [medium-, low-, and ultralow-molecular-weight heparin (MMWH, LMWH, ULMWH, respectively)] on the antigen-induced acute bronchoconstrictor response (ABR) and airway hyperresponsiveness (AHR) in allergic sheep. Specific lung resistance was measured in 22 sheep before and after airway challenge with Ascaris suum antigen, without and after pretreatment with inhaled fractionated heparins at doses of 0.31–5.0 mg/kg. Airway responsiveness was estimated before and 2 h postantigen as the cumulative provocating dose of carbachol in breath units that increased specific lung resistance by 400%. All fractionated heparins caused a dose-dependent inhibition of ABR and AHR. ULMWH was the most effective fraction, with the inhibitory dose causing 50% protection (ID50) against ABR of 0.5 mg/kg, whereas ID50values of LMWH and MMWH were 1.25 and 1.8 mg/kg, respectively. ULMWH was also the most effective fraction in attenuating AHR; the ID50values for ULMWH, LMWH, and MMWH were 0.5, 2.5, and 4.7 mg/kg, respectively. These data suggest that 1) fractionated low-molecular-weight heparins attenuate antigen-induced ABR and AHR; 2) there is an inverse relationship between the antiallergic activity of heparin fractions and molecular weight; and 3) ULMWH is the most effective fraction preventing allergic bronchoconstriction and airway hyperresponsiveness.

1999 ◽  
Vol 86 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Carlos Campo ◽  
Jussara F. Molinari ◽  
Jaime Ungo ◽  
Tahir Ahmed

We have hypothesized that antiallergic activity of inhaled heparin is molecular weight dependent and mediated by “nonanticoagulant fractions” (NAF-heparin). Therefore, we studied comparative effects of high-, medium-, and ultralow-molecular-weight (HMW, MMW, and ULMW, respectively) NAF-heparins on acute bronchoconstrictor response (ABR) and airway hyperresponsiveness (AHR) in allergic sheep. Specific lung resistance was measured in 23 allergic sheep, before and immediately after challenge with Ascaris suum antigen, without and after pretreatment with inhaled NAF-heparins. Airway responsiveness was estimated before and 2 h postantigen as the cumulative provocating dose of carbachol in breath units, which increased specific lung resistance by 400%. NAF-heparins attenuated ABR and AHR in a molecular-weight-dependent fashion. HMW NAF-heparin ( n = 8) was the least effective agent: it attenuated ABR [inhibitory dose causing 50% protection (ID50) = 4 mg/kg] but had no effect on AHR. MMW NAF-heparin ( n = 8) showed intermediate efficacy (ABR ID50= 0.8 mg/kg, AHR ID50= 1.4 mg/kg), whereas ULMW NAF-heparin ( n = 7) was the most effective agent (ABR ID50= 0.4 mg/kg, AHR ID50= 0.2 mg/kg). ULMW NAF-heparin was 3.5 times more potent in attenuating antigen-induced AHR when administered “after” antigen challenge and failed to inhibit the bronchoconstrictor response to carbachol and histamine. In 15 additional sheep, segmental antigen challenge caused a marked increase in histamine in bronchoalveolar lavage fluid that was not prevented by any of the inhaled NAF-heparins. These data indicate that antiallergic activity of inhaled heparin is independent of its anticoagulant action and resides in the <2,500 ULMW chains. The antiallergic activity of NAF-heparins is mediated by an unknown biological action and may have therapeutic potential.


2000 ◽  
Vol 88 (5) ◽  
pp. 1721-1729 ◽  
Author(s):  
Tahir Ahmed ◽  
Jaime Ungo ◽  
Min Zhou ◽  
Carlos Campo

Inhaled heparin has been shown to inhibit allergic bronchoconstriction in sheep that develop only acute responses to antigen (acute responders) but was ineffective in sheep that develop both acute and late airway responses (LAR) (dual responders). Because the antiallergic activity of heparin is molecular-weight dependent, we hypothesized that heparin-derived oligosaccharides (<2,500) with potential anti-inflammatory activity may attenuate the LAR in the dual-responder sheep. Specific lung resistance was measured in 24 dual-responder sheep before and serially for 8 h after challenge with Ascaris suum antigen for demonstration of early airway response (EAR) and LAR, without and after treatment with inhaled medium-, low-, and ultralow-molecular-weight (ULMW) heparins and “non-anticoagulant” fractions (NAF) of heparin. Airway responsiveness was estimated before and 24 h postantigen as the cumulative provocating dose of carbachol that increased specific lung resistance by 400%. Only ULMW heparins caused a dose-dependent inhibition of antigen-induced EAR and LAR and postantigen airway hyperresponsiveness (AHR), whereas low- and medium-molecular-weight heparins were ineffective. The effects of ULMW heparin and ULMW NAF-heparin were comparable and inhibited the LAR and AHR even when administered “after” the antigen challenge. The ULMW NAF-heparin failed to inhibit the bronchoconstrictor response to histamine, carbachol, and leukotriene D4, excluding a direct effect on airway smooth muscle. In six sheep, segmental antigen challenge caused a marked increase in bronchoalveolar lavage histamine, which was not prevented by inhaled ULMW NAF-heparin. The results of this study in the dual-responder sheep demonstrate that 1) the antiallergic activity of inhaled “fractionated” heparins is molecular-weight dependent, 2) only ULMW heparins inhibit the antigen-induced EAR and LAR and postantigen AHR, and 3) the antiallergic activity is mediated by nonanticoagulant fractions and resides in the ULMW chains of <2,500.


1993 ◽  
Vol 13 (S 01) ◽  
pp. S5-S11 ◽  
Author(s):  
Debra Hoppensteadt ◽  
Jeanine Walenga ◽  
A Ahsan ◽  
O Iqbal ◽  
W Jeske ◽  
...  

SummaryThe introduction of low molecular weight heparins has added a new dimension to the pharmacological management of thrombotic disorders. Because of different chemical and pharmacological characteristics, due to the manufacturing process, each LMWH should be considered as a distinct entitity and only be used for its given indication. A list of commercially available LMWHs is included. The mechanism of action of the LMWHs and their use in various disorders are discussed. Available laboratory tests for monitoring LMWHs are presented and their limitations pointed out.


Sign in / Sign up

Export Citation Format

Share Document