Effects of postural changes and vestibular lesions on diaphragm and rectus abdominis activity in awake cats

2001 ◽  
Vol 91 (1) ◽  
pp. 137-144 ◽  
Author(s):  
L. A. Cotter ◽  
H. E. Arendt ◽  
J. G. Jasko ◽  
C. Sprando ◽  
S. P. Cass ◽  
...  

Changes in posture can affect the resting length of the diaphragm, requiring alterations in the activity of both the abdominal muscles and the diaphragm to maintain stable ventilation. To determine the role of the vestibular system in regulating respiratory muscle discharges during postural changes, spontaneous diaphragm and rectus abdominis activity and modulation of the firing of these muscles during nose-up and ear-down tilt were compared before and after removal of labyrinthine inputs in awake cats. In vestibular-intact animals, nose-up and ear-down tilts from the prone position altered rectus abdominis firing, whereas the effects of body rotation on diaphragm activity were not statistically significant. After peripheral vestibular lesions, spontaneous diaphragm and rectus abdominis discharges increased significantly (by ∼170%), and augmentation of rectus abdominis activity during nose-up body rotation was diminished. However, spontaneous muscle activity and responses to tilt began to recover after a few days after the lesions, presumably because of plasticity in the central vestibular system. These data suggest that the vestibular system provides tonic inhibitory influences on rectus abdominis and the diaphragm and in addition contributes to eliciting increases in abdominal muscle activity during some changes in body orientation.

1987 ◽  
Vol 57 (6) ◽  
pp. 1854-1866 ◽  
Author(s):  
A. D. Miller ◽  
L. K. Tan ◽  
I. Suzuki

The role of ventral respiratory group (VRG) expiratory (E) neurons in the control of abdominal and internal intercostal (expiratory) muscle activity during vomiting was examined in decerebrate cats by recording from these neurons during fictive vomiting in paralyzed animals and comparing abdominal muscle activity during vomiting before and after sectioning the axons of these descending neurons. Fictive vomiting was defined by a series of bursts of coactivation of abdominal and phrenic nerves elicited by either subdiaphragmatic vagus nerve stimulation or emetic drugs. Such coordinated activity would be expected to produce vomiting if the animals were not paralyzed. Data were recorded from 27 VRG E neurons that were antidromically activated from the lower thoracic (T13) or lumbar spinal cord. During fictive vomiting, almost two-thirds of these neurons (17/27) were mainly active in between periods of abdominal and phrenic nerve coactivation, when the internal intercostal motoneurons are known to be active. This group of neurons was termed INT neurons. INT neurons were subdivided according to whether they were active between every burst of phrenic and abdominal nerve coactivation (INTa neurons, n = 10) or only between some bursts (INTb neurons, n = 7). Another one-third of the VRG E neurons had normal or increased levels of activity when the abdominal nerves were active during fictive vomiting (ABD neurons). The one remaining neuron was mainly silent throughout fictive vomiting. ABD neurons were indistinguishable from INT neurons on the basis of their location in the VRG, type of firing pattern (ramp versus step ramp), conduction velocity, or extent of projection in the lumbar cord. However, INTa neurons had a significantly higher discharge rate during respiration than either ABD or INTb neurons. Abdominal muscle EMG and nerve activity were recorded from six unparalyzed cats before and after cutting the axons of VRG E neurons as they cross the midline between C1 and the obex. The lesions abolished or almost eliminated expiratory modulation of abdominal muscle activity. In contrast, the abdominal muscles were always active during vomiting; however, the amplitude of postlesion abdominal activity varied from approximately 70-100% of prelesion values in three cats to 60-70% of normal in a fourth animal to only approximately 20% of prelesion values in two other cats.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Natalia Kuciel ◽  
Justyna Mazurek ◽  
Karolina Biernat ◽  
Łukasz Pawik ◽  
Edyta Sutkowska

Purpose: Exercises after pregnancy can reduce the severity and risk of postnatal locomotor system disorders and muscular dysfunctions. The aim of the study was to evaluate electromyographic activity of abdominal muscles in women who gave birth naturally and via a caesarean section, and to compare it to a group of women who have never given birth. Methods: 27 women were included into the study after completing the personal questionnaire and functional examination. The surface electromyography during abdominal bracing and posterior pelvic tilt was used to test rectus abdominis muscles and internus oblique/ transversus abdominis muscles bilaterally. After normalization test, patients were asked to perform abdominal bracing and posterior pelvic tilt exercises. Results: Activity of rectus abdominis muscle is higher in posterior pelvic tilt compared to abdominal bracing. It should be noted that the internus oblique/transversus abdominis muscle activity in both exercises is similar. Conclusions: In women after natural birth and after a cesarean section who experienced no locomotor system symptoms, no statistically significant differences in abdominal muscle activity in both exercises were observed. In each group being studied, posterior pelvic tilt activated rectus abdominis muscles to a greater extent than just bracing.


1992 ◽  
Vol 72 (3) ◽  
pp. 881-887 ◽  
Author(s):  
Y. Wakai ◽  
M. M. Welsh ◽  
A. M. Leevers ◽  
J. D. Road

Expiratory muscle activity has been shown to occur in awake humans during lung inflation; however, whether this activity is dependent on consciousness is unclear. Therefore we measured abdominal muscle electromyograms (intramuscular electrodes) in 13 subjects studied in the supine position during wakefulness and non-rapid-eye-movement sleep. Lung inflation was produced by nasal continuous positive airway pressure (CPAP). CPAP at 10–15 cmH2O produced phasic expiratory activity in two subjects during wakefulness but produced no activity in any subject during sleep. During sleep, CPAP to 15 cmH2O increased lung volume by 1,260 +/- 215 (SE) ml, but there was no change in minute ventilation. The ventilatory threshold at which phasic abdominal muscle activity was first recorded during hypercapnia was 10.3 +/- 1.1 l/min while awake and 13.8 +/- 1 l/min while asleep (P less than 0.05). Higher lung volumes reduced the threshold for abdominal muscle recruitment during hypercapnia. We conclude that lung inflation alone over the range that we studied does not alter ventilation or produce recruitment of the abdominal muscles in sleeping humans. The internal oblique and transversus abdominis are activated at a lower ventilatory threshold during hypercapnia, and this activation is influenced by state and lung volume.


Author(s):  
Kazuma Uebayashi ◽  
Yu Okubo ◽  
Takuya Nishikawa ◽  
Taro Morikami ◽  
Jindo Hatanaka

BACKGROUND: Given the characteristics of the superficial trunk muscles that cross the chest and pelvis, their excessive contraction might limit chest mobility. OBJECTIVE: To examine the immediate effects of two types of trunk muscle exercises on chest mobility and trunk muscle activities. METHODS: Fourteen healthy men (age: 21.1 ± 1.0 years, height: 172.7 ± 5.6 cm, weight: 61.0 ± 7.1 kg, body mass index: 20.4 ± 1.7 kg/m2; mean ± SD) randomly performed trunk side flexion and draw-in exercises using a cross-over design. The chest kinematic data and trunk muscle activities were measured before and after each intervention during the following tasks: maximum inspiration/expiration and maximum pelvic anterior/posterior tilt while standing. Two-way repeated measures analysis of variance was used for statistical analysis (P< 0.05). RESULTS: After the side flexion, upper and lower chest mobility significantly decreased, and superficial trunk muscle activity significantly increased during the maximum pelvic anterior tilt (P< 0.05). Additionally, after the draw-in, upper chest mobility significantly increased during the maximum pelvic anterior tilt (P< 0.05). CONCLUSIONS: Increased activity of the superficial abdominal muscles might limit chest mobility during maximum pelvic anterior tilt. Conversely, the facilitation of deep trunk muscles might increase upper chest mobility during the maximum pelvic anterior tilt.


1988 ◽  
Vol 64 (3) ◽  
pp. 1060-1067 ◽  
Author(s):  
G. A. Farkas ◽  
R. E. Baer ◽  
M. Estenne ◽  
A. De Troyer

To examine the mechanical effects of the abdominal and triangularis sterni expiratory recruitment that occurs when anesthetized dogs are tilted head up, we measured both before and after cervical vagotomy the end-expiratory length of the costal and crural diaphragmatic segments and the end-expiratory lung volume (FRC) in eight spontaneously breathing animals during postural changes from supine (0 degree) to 80 degrees head up. Tilting the animals from 0 degree to 80 degrees head up in both conditions was associated with a gradual decrease in end-expiratory costal and crural diaphragmatic length and with a progressive increase in FRC. All these changes, however, were considerably larger (P less than 0.005 or less) postvagotomy when the expiratory muscles were no longer recruited with tilting. Alterations in the elastic properties of the lung could not account for the effects of vagotomy on the postural changes. We conclude therefore that 1) by contracting during expiration, the canine expiratory muscles minimize the shortening of the diaphragm and the increase in FRC that the action of gravity would otherwise introduce, and 2) the end-expiratory diaphragmatic length and FRC in upright dogs are thus actively determined. The present data also indicate that by relaxing at end expiration, the expiratory muscles make a substantial contribution to tidal volume in upright dogs; in the 80 degrees head-up posture, this contribution would amount to approximately 60% of tidal volume.


1994 ◽  
Vol 266 (6) ◽  
pp. H2423-H2429 ◽  
Author(s):  
R. F. Fregosi

The purpose of this study was to test the hypothesis that hemorrhage-induced hypotension increases the neural drive to the abdominal expiratory muscles in chloralose-urethan-anesthetized cats that are studied under conditions of constant arterial PCO2 (PaCO2) and hyperoxia. A secondary aim was to describe in detail the concomitant changes in inspired pulmonary ventilation (VI) and the pattern of breathing under these conditions. The rectified and integrated electromyogram (EMG) of the external oblique and rectus abdominis muscles and VI were recorded in moderate and severe hemorrhagic hypotension, leading to reductions in mean blood pressure of approximately 30 and 60%, respectively. The PaCO2 was prevented from falling, and the arterial PO2 was maintained at a hyperoxic level (> 200 mmHg) by adding CO2 and O2 to the inspired gas mixture. VI increased by 2.5- and 5-fold in moderate and severe hypotension (P < 0.05). The changes in VI were mediated exclusively by changes in tidal volume, indicating that the reflex did not alter the activity of respiratory rhythm-generating structures. The EMG of external oblique muscles averaged 2, 44, and 100% in control conditions and in moderate and severe hypotension, respectively; corresponding values in rectus abdominis muscles were 10, 28, and 100% (P < 0.05 for both muscles). Bilateral cervical vagotomy caused a one- to three-fold decrease in the ventilatory response to hemorrhage and abolished the increase in abdominal muscle EMG activities. In conclusion, hemorrhagic hypotension reflexly increases pulmonary ventilation and the neural drive to the abdominal muscles. The reflex is vagally mediated, but the location of the receptors was not identified.


1990 ◽  
Vol 68 (4) ◽  
pp. 1343-1349 ◽  
Author(s):  
J. F. Watchko ◽  
T. L. O'Day ◽  
B. S. Brozanski ◽  
R. D. Guthrie

We examined abdominal muscle minute electromyographic (EMG) activity (peak moving time average EMG x respiratory rate) during eupnea, hyperoxic hypercapnia (8% CO2-40% O2-balance N2), and hypoxia (13% O2) in 12 anesthetized (0.5% halothane) newborn piglets. In addition, we assessed the role of vagal afferent pathways in the abdominal muscles' response to ventilatory chemostimulation by examining abdominal EMG activity (EMGab) before and after bilateral cervical vagotomy in five animals. Phasic expiratory EMGab was observed in 11 of 12 piglets during eupnea. Hypercapnia was associated with a sustained augmentation of minute EMGab (444 +/- 208% control). In contrast, hypoxia consistently augmented (1 min, 193 +/- 33% control) then diminished (5 min, 126 +/- 39% control) minute EMGab. Vagotomy resulted in a decline in peak moving time average EMGab by approximately one-half (48 +/- 18% control); the abdominal muscles' response to ventilatory chemostimulation, however, was qualitatively unchanged. We conclude that 1) expiration during eupnea in anesthetized newborn piglets is associated with phasic EMGab; 2) both hypercapnia and hypoxia augment minute EMGab; however, only hypercapnia is associated with sustained augmentation; and 3) although vagal afferents have a role in modulating the base-line level of EMGab, other extravagal mechanisms appear to determine the pattern of EMGab in response to ventilatory chemostimulation.


2001 ◽  
Vol 81 (5) ◽  
pp. 1096-1101 ◽  
Author(s):  
Gregory J Lehman ◽  
Stuart M McGill

Abstract Background and Purpose. Controversy exists around exercises and clinical tests that attempt to differentially activate the upper or lower portions of the rectus abdominis muscle. The purpose of this study was to assess the activation of the upper and lower portions of the rectus abdominis muscle during a variety of abdominal muscle contractions. Subjects. Subjects (N=11) were selected from a university population for athletic ability and low subcutaneous fat to optimize electromyographic (EMG) signal collection. Methods. Controlling for spine curvature, range of motion, and posture (and, therefore, muscle length), EMG activity of the external oblique muscle and upper and lower portions of rectus abdominis muscle was measured during the isometric portion of curl-ups, abdominal muscle lifts, leg raises, and restricted or attempted leg raises and curl-ups. A one-way repeated-measures analysis of variance was used to test for differences in activity between exercises in the external oblique and rectus abdominis muscles as well as between the portions of the rectus abdominis muscle. Results. No differences in muscle activity were found between the upper and lower portions of the rectus abdominis muscle within and between exercises. External oblique muscle activity, however, showed differences between exercises. Discussion and Conclusion. Normalizing the EMG signal led the authors to believe that the differences between the portions of the rectus abdominis muscle are small and may lack clinical or therapeutic relevance.


1982 ◽  
Vol 52 (3) ◽  
pp. 700-704 ◽  
Author(s):  
S. H. Loring ◽  
J. Mead

Although there is electromyographic evidence for abdominal muscle activity during quiet breathing in standing subjects, several studies have shown, or assumed, that subjects normally breathe on their relaxation characteristics. This latter observation would by itself suggest that abdominal muscles do not contract during quiet breathing. To test this assumption we observed abdominal and rib cage displacements with magnetometers in 17 uninformed subjects. During quiet breathing most subjects showed evidence of tonic or phasic abdominal muscle contraction while standing and sitting but not supine. Subjects studied during hyperpnea immediately following exercise-showed evidence of greater abdominal muscle contraction than at rest. We conclude that most subjects standing at rest normally contract their abdominal muscles.


1999 ◽  
Vol 86 (6) ◽  
pp. 1994-2000 ◽  
Author(s):  
Tadashi Abe ◽  
Takumi Yamada ◽  
Tomoyuki Tomita ◽  
Paul A. Easton

In humans during stimulated ventilation, substantial abdominal muscle activity extends into the following inspiration as postexpiratory expiratory activity (PEEA) and commences again during late inspiration as preexpiratory expiratory activity (PREA). We hypothesized that the timing of PEEA and PREA would be changed systematically by posture. Fine-wire electrodes were inserted into the rectus abdominis, external oblique, internal oblique, and transversus abdominis in nine awake subjects. Airflow, end-tidal CO2, and moving average electromyogram (EMG) signals were recorded during resting and CO2-stimulated ventilation in both supine and standing postures. Phasic expiratory EMG activity (tidal EMG) of the four abdominal muscles at any level of CO2 stimulation was greater while standing. Abdominal muscle activities during inspiration, PEEA, and PREA, were observed with CO2stimulation, both supine and standing. Change in posture had a significant effect on intrabreath timing of expiratory muscle activation at any level of CO2stimulation. The transversus abdominis showed a significant increase in PEEA and a significant decrease in PREA while subjects were standing; similar changes were seen in the internal oblique. We conclude that changes in posture are associated with significant changes in phasic expiratory activity of the four abdominal muscles, with systematic changes in the timing of abdominal muscle activity during early and late inspiration.


Sign in / Sign up

Export Citation Format

Share Document