Lactate dehydrogenase expression at the onset of altered loading in rat soleus muscle

2004 ◽  
Vol 97 (4) ◽  
pp. 1424-1430 ◽  
Author(s):  
Tyrone A. Washington ◽  
James M. Reecy ◽  
Raymond W. Thompson ◽  
Larry L. Lowe ◽  
Joseph M. McClung ◽  
...  

Both functional overload and hindlimb disuse induce significant energy-dependent remodeling of skeletal muscle. Lactate dehydrogenase (LDH), an important enzyme involved in anaerobic glycolysis, catalyzes the interconversion of lactate and pyruvate critical for meeting rapid high-energy demands. The purpose of this study was to determine rat soleus LDH-A and -B isoform expression, mRNA abundance, and enzymatic activity at the onset of increased or decreased loading in the rat soleus muscle. The soleus muscles from male Sprague-Dawley rats were functionally overloaded for up to 3 days by a modified synergist ablation or subjected to disuse by hindlimb suspension for 3 days. LDH mRNA concentration was determined by Northern blotting, LDH protein isoenzyme composition was determined by zymogram analysis, and LDH enzymatic activity was determined spectrophotometrically. LDH-A mRNA abundance increased by 372%, and LDH-B mRNA abundance decreased by 43 and 31% after 24 h and 3 days of functional overload, respectively, compared with that in control rats. LDH protein expression demonstrated a shift by decreasing LDH-B isoforms and increasing LDH-A isoforms. LDH-B activity decreased 80% after 3 days of functional overload. Additionally, LDH-A activity increased by 234% following 3 days of hindlimb suspension. However, neither LDH-A or LDH-B mRNA abundance was affected following 3 days of hindlimb suspension. In summary, the onset of altered loading induced a differential expression of LDH-A and -B in the rat soleus muscle, favoring rapid energy production. Long-term altered loading is associated with myofiber conversion; however, the rapid changes in LDH at the onset of altered loading may be involved in other physiological processes.

1996 ◽  
Vol 81 (6) ◽  
pp. 2540-2546 ◽  
Author(s):  
Robert J. Talmadge ◽  
Roland R. Roy ◽  
V. Reggie Edgerton

Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl. Physiol. 81(6): 2540–2546, 1996.—The effects of 14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044) on myosin heavy chain (MHC) isoform content of the rat soleus muscle and single muscle fibers were determined. On the basis of electrophoretic analyses, there was a de novo synthesis of type IIx MHC but no change in either type I or IIa MHC isoform proportions after either SF or HS compared with controls. The percentage of fibers containing only type I MHC decreased by 26 and 23%, and the percentage of fibers with multiple MHCs increased from 6% in controls to 32% in HS and 34% in SF rats. Type IIx MHC was always found in combination with another MHC or combination of MHCs; i.e., no fibers contained type IIx MHC exclusively. These data suggest that the expression of the normal complement of MHC isoforms in the adult rat soleus muscle is dependent, in part, on normal weight bearing and that the absence of weight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.


1993 ◽  
Vol 74 (3) ◽  
pp. 1156-1160 ◽  
Author(s):  
M. Campione ◽  
S. Ausoni ◽  
C. Y. Guezennec ◽  
S. Schiaffino

We examined the myosin heavy-chain (MHC), troponin T (TnT), and troponin I (TnI) isoform composition in the rat soleus muscle after 21 days of hindlimb suspension using electrophoretic and immunoblotting analysis with specific monoclonal antibodies. The suspended soleus showed a shift in the MHC isoform distribution with a marked increase (from 1.0 to 33%) in the relative amount of type IIa and IIx MHC and a corresponding decrease in type I MHC. However, type IIb MHC, which represents a major component in fast-twitch muscles, was not detected in suspended soleus muscles. TnT and TnI isoform composition was also changed with the appearance of fast-type TnI and TnT bands. However, a high-mobility TnT band, which represents a major component in fast-twitch muscles, was not expressed in suspended soleus. These isoform transitions may be related to the increased maximal velocity of shortening and higher calcium sensitivity previously reported in the rat soleus after hindlimb suspension.


PROTEOMICS ◽  
2002 ◽  
Vol 2 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Robert J. Isfort ◽  
Feng Wang ◽  
Kenneth D. Greis ◽  
Yiping Sun ◽  
Thomas W. Keough ◽  
...  

1995 ◽  
Vol 44 (1) ◽  
pp. 137-146
Author(s):  
TADASHI OKUMOTO ◽  
AYAKO SAITOH ◽  
HAJIME OHMORI ◽  
SHIGERU KATSUTA

2016 ◽  
Vol 39 (3) ◽  
pp. 1011-1020 ◽  
Author(s):  
Timur Mirzoev ◽  
Sergey Tyganov ◽  
Natalia Vilchinskaya ◽  
Yulia Lomonosova ◽  
Boris Shenkman

Background/Aims: The purpose of the study was to assess the amount of rRNA and phosphorylation status of the key markers of mTORC1-dependent (70s6k, 4E-BP1) and mTORC1-independent (GSK-3β, AMPK) signaling pathways controlling protein synthesis in rat soleus during early stages of mechanical unloading (hindlimb suspension (HS) for 1-, 3- and 7 days). Methods: The content of the key signaling molecules of various anabolic signaling pathways was determined by Western-blotting. The amount of 28S rRNA was evaluated by RT-PCR. The rate of protein synthesis was assessed using in-vivo SUnSET technique. Results: HS for 3 and 7 days induced a significant (p<0.05) decrease in the rate of global protein synthesis in soleus muscle in comparison with control. HS within 24 hours resulted in a significant (p<0.05) decrease in p-4E-BP1 content, p-AMPK content and increase in p-p70s6k content in rat soleus muscle. Following three days of HS the content of p-AKT was decreased (p<0.05). After 7 days of HS the phosphorylation level of AKT and GSK-3beta was significantly reduced (p<0.05) compared to control. We also observed a significant decrease in the amount of 28S rRNA in rat soleus following 1, 3 and 7 days of HS. Conclusion: Taken together, the results of our study suggest that a decline in the global rate of protein synthesis in rat soleus during early stages of simulated microgravity is associated with impaired ribosome biogenesis as well as reduced activity of mTORC1-independent signaling pathways.


1991 ◽  
Vol 71 (1) ◽  
pp. 392-392

Pages 504–508: D.Desplanches, S.R. Kayar, B.Sempore, R.Flandrois, and H.Hoppeler. “Rat soleus muscle ultrastructure after hindlimb suspension.” Page 506: As a result of technical difficulties in distinguishing mitochondria from Z-band material in some samples, this material was reevaluated. Tables 3 and 4 should read as follows:


1991 ◽  
Vol 71 (3) ◽  
pp. 1184-1184

Pages 504–508: D.Desplanches, S.R. Kayar, B.Sempore, R.Flandrois, and H.Hoppeler. “Rat soleus muscle ultrastructure after hindlimb suspension.” Page 506: As a result of technical difficulties in distinguishing mitochondria from Z-band material in some samples, this material was reevaluated. Tables 3 and 4 should read as follows:


2005 ◽  
Vol 288 (6) ◽  
pp. E1062-E1066 ◽  
Author(s):  
David C. Wright ◽  
Paige C. Geiger ◽  
John O. Holloszy ◽  
Dong-Ho Han

Increases in contraction-stimulated glucose transport in fast-twitch rat epitrochlearis muscle are mediated by AMPK- and Ca2+/calmodulin-dependent protein kinase (CAMK)-dependent signaling pathways. However, recent studies provide evidence suggesting that contraction-stimulated glucose transport in slow-twitch skeletal muscle is mediated through an AMPK-independent pathway. The purpose of the present study was to test the hypothesis that contraction-stimulated glucose transport in rat slow-twitch soleus muscle is mediated by an AMPK-independent/Ca2+-dependent pathway. Caffeine, a sarcoplasmic reticulum (SR) Ca2+-releasing agent, at a concentration that does not cause muscle contractions or decreases in high-energy phosphates, led to an ∼2-fold increase in 2-deoxyglucose (2-DG) uptake in isolated split soleus muscles. This increase in glucose transport was prevented by the SR calcium channel blocker dantrolene and the CAMK inhibitor KN93. Conversely, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an AMPK activator, had no effect on 2-DG uptake in isolated split soleus muscles yet resulted in an ∼2-fold increase in the phosphorylation of AMPK and its downstream substrate acetyl-CoA carboxylase. The hypoxia-induced increase in 2-DG uptake was prevented by dantrolene and KN93, whereas hypoxia-stimulated phosphorylation of AMPK was unaltered by these agents. Tetanic muscle contractions resulted in an ∼3.5-fold increase in 2-DG uptake that was prevented by KN93, which did not prevent AMPK phosphorylation. Taken in concert, our results provide evidence that hypoxia- and contraction-stimulated glucose transport is mediated entirely through a Ca2+-dependent mechanism in rat slow-twitch muscle.


1987 ◽  
Vol 62 (6) ◽  
pp. 2338-2347 ◽  
Author(s):  
E. O. Hauschka ◽  
R. R. Roy ◽  
V. R. Edgerton

The effects of 28 days of hindlimb suspension (HS) and HS plus 10 daily forceful lengthening contractions on rat soleus muscle fibers were studied. Compared with age-matched controls (CON), soleus wet weights of suspended rats were significantly decreased (approximately 49%). In HS rats, the light adenosinetriphosphatase (ATPase) fibers (staining lightly for myosin ATPase, pH = 8.8) atrophied more than the dark ATPase fibers (staining darkly for myosin ATPase, pH = 8.8). Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities and the proportion of dark ATPase fibers were higher in HS than CON rats. Daily forceful lengthening contractions did not prevent the suspension-induced changes. These results considered in conjunction with a collaborative study on the mechanical properties of HS rats (Roy et al., accompanying paper) suggest a shift in the contractile potential of the muscle following HS without a deficit in SDH, a metabolic property commonly associated with resistance to fatigue. The results support the view that soleus muscle fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that SDH and GPD activity per volume of tissue can be maintained or increased even when there are severe losses of contractile proteins.


1994 ◽  
Vol 77 (1) ◽  
pp. 290-297 ◽  
Author(s):  
B. A. St Pierre ◽  
J. G. Tidball

The hypothesis that distinct populations of macrophages are associated with muscle necrosis and regeneration was examined in Wistar rat soleus muscle after 10 days of hindlimb suspension and 2, 4, and 7 days after the resumption of weight bearing. Necrosis was identified using histological features, such as muscle fiber infiltration, and regeneration was identified using immunohistochemical techniques for developmental myosin heavy chain (dMHC). Light-microscopic observations show that necrotic fibers in 2-day reloaded soleus muscle were invaded by ED1+ and Ia+ macrophages. The number of invaded fibers in muscles reloaded for 2 days increased to 2.8/mm2 compared with 0.2/mm2 in age-matched normal muscle but returned to control values by the 4th day of resumed weight bearing. In the interstitial spaces of 2-day recovery muscle, ED1+ and Ia+ macrophages numbered 369 and 332/mm2, respectively, compared with 12 and 72/mm2, respectively, in control soleus. After 7 days of reloading, the number of ED1+ cells was similar to that of control. Ia+ macrophages decreased to 240/mm2 at 4 days but after 7 days rose above control values to 429/mm2. ED2+ macrophages in 4- and 7-day reloaded soleus increased 70–80% in the interstitial spaces compared with control but were not observed to infiltrate necrotic muscle fibers at any time points. Immunohistochemistry and immunoblots using a monoclonal anti-dMHC antibody demonstrate a greater proportion of myofibers expressing dMHC isoforms after 4 and 7 days of reloading. These findings indicate that macrophage subpopulations are associated with distinct stages during the recovery process from hindlimb suspension: ED1+ macrophages are associated with muscle necrosis, whereas ED2+ cells are associated with muscle regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document