Last Word on Viewpoint: Fragile bones of elite cyclists: to treat or not to treat?

2021 ◽  
Vol 131 (1) ◽  
pp. 34-35
Author(s):  
Luuk Hilkens ◽  
Pim Knuiman ◽  
Mathieu Heijboer ◽  
Robert Kempers ◽  
Asker E. Jeukendrup ◽  
...  
Keyword(s):  
Author(s):  
Patrizio Ripari ◽  
Joan Viciano ◽  
Matteo Mazzia ◽  
Mario Pasquali ◽  
Giorgia Di Domizio ◽  
...  

2008 ◽  
Vol 33 (4) ◽  
pp. 735-742 ◽  
Author(s):  
Aldo Sassi ◽  
Franco M. Impellizzeri ◽  
Andrea Morelli ◽  
Paolo Menaspà ◽  
Ermanno Rampinini

The primary purpose of this study was to compare seasonal changes in cycling gross efficiency (GE) and economy (EC) with changes in other aerobic fitness indices. The secondary aim was to assess the relationship between maximum oxygen consumption, GE, and EC among elite cyclists. The relationships of maximum oxygen consumption with GE and EC were studied in 13 cyclists (8 professional road cyclists and 5 mountain bikers). Seasonal changes in GE and EC, predicted time to exhaustion (pTE), maximum oxygen consumption, and respiratory compensation point (RCP) were examined in a subgroup of 8 subjects, before (TREST) and after (TPRECOMP) the pre-competitive winter training, and during the competitive period (TCOMP). GE and EC were assessed during a constant power test at 75% of peak power output (PPO). Significant main effect for time was found for maximum oxygen consumption (4.623 ± 0.675, 4.879 ± 0.727, and 5.010 ± 0.663 L·min–1; p = 0.028), PPO (417.8 ± 46.5, 443.0 ± 48.0, and 455 ± 48 W; p < 0.001), oxygen uptake at RCP (3.866 ± 0.793, 4.041 ± 0.685, and 4.143 ± 0.643 L·min–1; p = 0.049), power output at RCP (330 ± 64, 354 ± 52, and 361 ± 50 W; p < 0.001), and pTE (17 ± 4, 30 ± 8, and 46 ± 17 min; p < 0.001). No significant main effect for time was found in GE (p = 0.097) or EC (p = 0.225), despite within-subject seasonal changes. No significant correlations were found between absolute maximum oxygen consumption and GE (r = –0.276; p = 0.359) or EC (r = –0.328; p = 0.272). However, cyclists with high maximum oxygen consumption values (i.e., over 80 mL·kg–1·min–1), showed low efficiency rates. Despite within-subject seasonal waves in cycling efficiency, changes in GE and EC should not be expected as direct consequence of changes in other maximal and submaximal parameters of aerobic fitness (i.e., maximum oxygen consumption and RCP).


2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Peter Leo ◽  
Iñigo Mujika ◽  
Justin Lawley

PURPOSE: The COVID-19 pandemic and its associated mobility restrictions caused many athletes to adjust or reduce their usual training load. The aim of this study was to investigate how the COVID-19 restrictions affected training and performance physiology measures in U23 elite cyclists. METHODS: Twelve U23 elite cyclists (n = 12) participated in this study (mean ± SD: Age 21.2 ± 1.2 years; height 182.9 ± 4.7 cm; body mass 71.4 ± 6.5 kg). Training characteristics were assessed between 30 days pre, during, and post COVID-19 restrictions, respectively. The physiological assessment in the laboratory was 30 days pre and post COVID-19 restrictions and included maximum oxygen uptake (V̇O2max), peak power output for sprint (SprintPmax), and ramp incremental graded exercise (GXTPmax), as well as power output at ventilatory threshold (VT) and respiratory compensation point (RCP). RESULTS: Training load characteristics before, during, and after the lockdown remained statistically unchanged (p > 0.05) despite large effects (>0.8) with mean reductions of 4.7 to 25.0% during COVID-19 restrictions. There were no significant differences in maximal and submaximal power outputs, as well as relative and absolute V̇O2max between pre and post COVID-19 restrictions (p > 0.05) with small to moderate effects. DISCUSSION: These results indicate that COVID-19 restrictions did not negatively affect training characteristics and physiological performance measures in U23 elite cyclists for a period of <30 days. In contrast with recent reports on professional cyclists and other elite level athletes, these findings reveal that as long as athletes are able to maintain and/or slightly adapt their training routine, physiological performance variables remain stable.


2017 ◽  
pp. 313-321
Author(s):  
BÜLENT IŞIK ◽  
Z. Işık SOLAK GÖRMÜŞ ◽  
Hüseyin ASLAN ◽  
Abdullah İÇLİ ◽  
Galip Bilen Kürklü ◽  
...  
Keyword(s):  

2006 ◽  
Vol 6 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Carl D. Paton ◽  
Will G. Hopkins
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document