Damage to different motor units from active lengthening of the medial gastrocnemius muscle of the cat

2002 ◽  
Vol 92 (3) ◽  
pp. 1104-1110 ◽  
Author(s):  
C. L. Brockett ◽  
D. L. Morgan ◽  
J. E. Gregory ◽  
U. Proske

Slow-twitch motor units in the medial gastrocnemius muscle of the anesthetized cat were found to have an average optimum length for active tension that was 0.8 ± 0.5 (SE) mm longer than the whole muscle optimum. For fast-twitch units (time to peak < 50 ms), the average optimum was 1.3 ± 0.3 mm shorter than the whole muscle optimum. After the muscle had been subjected to 10 stretches while maximally activated, beginning at the whole muscle optimum length, the optimum lengths of the 27 fast-twitch motor units shifted significantly further in the direction of longer muscle lengths (mean 4.3 ± 0.3 mm) than for the eight slow-twitch units (2.1 ± 0.4 mm). A shift in the muscle's length-tension relation was interpreted as being due to sarcomere disruption. Statistical analysis showed that a motor unit's optimum length for a contraction, relative to the whole muscle optimum, was a better indicator of the unit's susceptibility to damage from active lengthenings than was motor unit type.

2007 ◽  
Vol 103 (3) ◽  
pp. 796-802 ◽  
Author(s):  
Lei Cui ◽  
Eric J. Perreault ◽  
Thomas G. Sandercock

Studies on skinned fibers and single motor units have indicated that slow-twitch fibers are stiffer than fast-twitch fibers. This suggests that skeletal muscles with different motor unit compositions may have different short-range stiffness (SRS) properties. Furthermore, the natural recruitment of slow before fast motor units may result in an SRS-force profile that is different from electrical stimulation. However, muscle architecture and the mechanical properties of surrounding tissues also contribute to the net SRS of a muscle, and it remains unclear how these structural features each contribute to the SRS of a muscle. In this study, the SRS-force characteristics of cat medial gastrocnemius muscle were measured during natural activation using the crossed-extension reflex, which activates slow before fast motor units, and during electrical activation, in which all motor units are activated synchronously. Short, rapid, isovelocity stretches were applied using a linear puller to measure SRS across the range of muscle forces. Data were collected from eight animals. Although there was a trend toward greater stiffness during natural activation, this trend was small and not statistically significant across the population of animals tested. A simple model, in which the slow-twitch fibers were assumed to be 30% stiffer than the fast-twitch fibers, was used to simulate the experimental results. Experimental and simulated results show that motor unit composition or firing rate has little effect on the SRS property of the cat MG muscle, suggesting that architectural features may be the primary determinant of SRS.


2020 ◽  
Author(s):  
Rositsa Raikova ◽  
Vessela Krasteva ◽  
Piotr Krutki ◽  
Hanna Drzymała-Celichowska ◽  
Katarzyna Kryściak ◽  
...  

AbstractOscillations of muscle force, observed as physiological tremors, rely upon the synchronized firings of active motor units (MUs). This study aimed to investigate the effects of synchronizing the firings of three types of MUs on force development using a mathematical model of the rat medial gastrocnemius muscle. The model was designed based on the actual proportion and physiological properties of MUs and motoneurons innervating the muscle. The isometric muscle and MU forces were simulated by a model predicting non-synchronized firing of a pool of 57 MUs (including eight slow, 23 fast resistant to fatigue, and 26 fast fatigable) to ascertain a maximum excitatory signal when all MUs were recruited into the contraction. The mean firing frequency of each MU depended upon the twitch contraction time, whereas the recruitment order was determined according to increasing forces (the size principle). The synchronization of firings of individual MUs was simulated using four different modes and inducing the synchronization of firings within three time windows (± 2, ± 4, and ± 6 ms) for four different combinations of MUs. The synchronization was estimated using two parameters, the correlation coefficient and the cross-interval synchronization index. The four scenarios of synchronization increased the values of the root-mean-square, range, and maximum force in correlation with the increase of the time window. Greater synchronization index values resulted in higher root-mean-square, range, and maximum of force outcomes for all MU types as well as for the whole muscle output; however, the mean spectral frequency of the forces decreased, whereas the mean force remained nearly unchanged. The range of variability and the root-mean-square of forces were higher for fast MUs than for slow MUs; meanwhile, the relative values of these parameters were highest for slow MUs, indicating their important contribution to muscle tremor, especially during weak contractions.Author summaryThe synchronization of firings of motor units (MUs), the smallest functional elements of skeletal muscle increases fluctuations in muscle force, known as physiological tremor, which can disturb high-precision movements. In this study, we adopted a recently proposed muscle model consisting of MUs of three different types (fast fatigable, fast resistant to fatigue, and slow) to study four different scenarios of MU synchronization during a steady level of excitatory input to motoneurons. The discharge patterns were synchronized between pairs of MUs by shifting in time individual pulses, which occurred within a short time interval, and a degree of synchronization was then estimated. The increased synchronization index resulted in increased force variability for all MU types as well as for the whole muscle output; however, the mean force levels remained nearly unchanged, whereas the frequencies of the force oscillations were decreased. The absolute range of force variability was higher for fast than for slow MUs, indicating their dominant influence on muscle tremor at strong contractions, but the highest relative increase in force variability was observed for synchronized slow MUs, indicating their significant contribution to tremor during weak contractions, in which only slow MUs are active.


1994 ◽  
Vol 76 (6) ◽  
pp. 2663-2671 ◽  
Author(s):  
L. J. Einsiedel ◽  
A. R. Luff

The aim of the study was to determine whether increased motoneuron activity induced by treadmill walking would alter the extent of motoneuron sprouting in the partially denervated rat medial gastrocnemius muscle. An extensive partial denervation was effected by unilateral section of the L5 ventral root, and it is very likely that all units remaining in the medial gastrocnemius were used in treadmill walking. Rats were trained for 1.5 h/day and after 14 days were walking at least 1 km/day. Motor unit characteristics were determined 24 days after the partial denervation and were compared with units from partially denervated control (PDC) animals and with units from normal (control) animals. In PDC rats, force developed by slow, fast fatigue-resistant, and fast intermediate-fatigable motor units increased substantially compared with control animals; that of fast-fatigable units did not increase. In partially denervated exercised animals, force developed by slow and fast-fatigue-resistant units showed no further increase, but fast-intermediate- and fast-fatigable units showed significant increases compared with those in PDC animals. The changes in force were closely paralleled by changes in innervation ratios. We concluded that neuronal activity is an important factor in determining the rate of motoneuron sprouting.


1997 ◽  
Vol 77 (5) ◽  
pp. 2605-2615 ◽  
Author(s):  
John B. Munson ◽  
Robert C. Foehring ◽  
Lorne M. Mendell ◽  
Tessa Gordon

Munson, John B., Robert C. Foehring, Lorne M. Mendell, and Tessa Gordon. Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. II. Motoneuron properties. J. Neurophysiol. 77: 2605–2615, 1997. Chronic stimulation (for 2–3 mo) of the medial gastrocnemius (MG) muscle nerve by indwelling electrodes renders the normally heterogeneous MG muscle mechanically and histochemically slow (type SO). We tested the hypothesis that motoneurons of MG muscle thus made type SO by chronic stimulation would also convert to slow phenotype. Properties of all single muscle units became homogeneously type SO (slowly contracting, nonfatiguing, nonsagging contraction during tetanic activation). Motoneuron electrical properties were also modified in the direction of type S, fatigue-resistant motor units. Two separate populations were identified (on the basis of afterhyperpolarization, rheobase, and input resistance) that likely correspond to motoneurons that had been fast (type F) or type S before stimulation. Type F motoneurons, although modified by chronic stimulation, were not converted to the type S phenotype, despite apparent complete conversion of their muscle units to the slow oxidative type (type SO). Muscle units of the former type F motor units were faster and/or more powerful than those of the former type S motor units, indicating some intrinsic regulation of motor unit properties. Experiments in which chronic stimulation was applied to the MG nerve cross-regenerated into skin yielded changes in motoneuron properties similar to those above, suggesting that muscle was not essential for the effects observed. Modulation of group Ia excitatory postsynaptic potential (EPSP) amplitude during high-frequency trains, which in normal MG motoneurons can be either positive or negative, was negative in 48 of 49 chronically stimulated motoneurons. Negative modulation is characteristic of EPSPs in motoneurons of most fatigue-resistant motor units. The general hypothesis of a periphery-to-motoneuron retrograde mechanism was supported, although the degree of control exerted by the periphery may vary: natural type SO muscle appears especially competent to modify motoneuron properties. We speculate that activity-dependent regulation of the neurotrophin-(NT) 4/5 in muscle plays an important role in controlling muscle and motoneuron properties.


1997 ◽  
Vol 77 (5) ◽  
pp. 2585-2604 ◽  
Author(s):  
T. Gordon ◽  
N. Tyreman ◽  
V. F. Rafuse ◽  
J. B. Munson

Gordon, T., N. Tyreman, V. F. Rafuse, and J. B. Munson. Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. I. Muscle and motor unit properties. J. Neurophysiol. 77: 2585–2604, 1997. This study of cat medial gastrocnemius (MG) muscle and motor unit (MU) properties tests the hypothesis that the normal ranges of MU contractile force, endurance, and speed are directly associated with the amount of neuromuscular activity normally experienced by each MU. We synchronously activated all MUs in the MG muscle with the same activity (20 Hz in a 50% duty cycle) and asked whether conversion of whole muscle contractile properties is associated with loss of the normal heterogeneity in MU properties. Chronically implanted cuff electrodes on the nerve to MG muscle were used for 24-h/day stimulation and for monitoring progressive changes in contractile force, endurance, and speed by periodic recording of maximal isometric twitch and tetanic contractions under halothane anesthesia. Chronic low-frequency stimulation slowed muscle contractions and made them weaker, and increased muscle endurance. The most rapid and least variable response to stimulation was a decline in force output of the muscle and constituent MUs. Fatigue resistance increased more slowly, whereas the increase in time to peak force varied most widely between animals and occurred with a longer time course than either force or endurance. Changes in contractile force, endurance, and speed of the whole MG muscle accurately reflected changes in the properties of the constituent MUs both in extent and time course. Normally there is a 100-fold range in tetanic force and a 10-fold range in fatigue indexes and twitch time to peak force. After chronic stimulation, the range in these properties was significantly reduced and, even in MU samples from single animals, the range was shown to correspond with the slow (type S) MUs of the normal MG. In no case was the range reduced to less than the type S range. The same results were obtained when the same chronic stimulation pattern of 20 Hz/50% duty cycle was imposed on paralyzed muscles after hemisection and unilateral deafferentation. The findings that the properties of MUs still varied within the normal range of type S MUs and were still heterogeneous despite a decline in the variance in any one property indicate that the neuromuscular activity can account only in part for the wide range of muscle properties. It is concluded that the normal range of properties within MU types reflects an intrinsic regulation of properties in the multinucleated muscle fibers.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Rositsa Raikova ◽  
Hristo Aladjov ◽  
Jan Celichowski ◽  
Piotr Krutki

Muscle force is due to the cumulative effect of repetitively contracting motor units (MUs). To simulate the contribution of each MU to whole muscle force, an approach implemented in a novel computer program is proposed. The individual contraction of an MU (the twitch) is modeled by a 6-parameter analytical function previously proposed; the force of one MU is a sum of its contractions due to an applied stimulation pattern, and the muscle force is the sum of the active MUs. The number of MUs, the number of slow, fast-fatigue-resistant, and fast-fatigable MUs, and their six parameters as well as a file with stimulation patterns for each MU are inputs for the developed software. Different muscles and different firing patterns can be simulated changing the input data. The functionality of the program is illustrated with a model consisting of 30 MUs of rat medial gastrocnemius muscle. The twitches of these MUs were experimentally measured and modeled. The forces of the MUs and of the whole muscle were simulated using different stimulation patterns that included different regular, irregular, synchronous, and asynchronous firing patterns of MUs. The size principle of MUs for recruitment and derecruitment was also demonstrated using different stimulation paradigms.


Sign in / Sign up

Export Citation Format

Share Document