chronic stimulation
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 36)

H-INDEX

45
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Victor J. Geraedts ◽  
Rogier A. P. van Ham ◽  
Jacobus J. van Hilten ◽  
Arne Mosch ◽  
Carel F. E. Hoffmann ◽  
...  

Background: It is currently unknown whether results from intraoperative test stimulation of two types of Deep Brain Stimulation (DBS), either during awake pallidal (GPi) or thalamic (Vim), are comparable to the results generated by chronic stimulation through the definitive lead.Objective: To determine whether side-effects-thresholds from intraoperative test stimulation are indicative of postoperative stimulation findings.Methods: Records of consecutive patients who received GPi or Vim were analyzed. Thresholds for the induction of either capsular or non-capsular side-effects were compared at matched depths and at group-level.Results: Records of fifty-two patients were analyzed (20 GPis, 75 Vims). The induction of side-effects was not significantly different between intraoperative and postoperative assessments at matched depths, although a large variability was observed (capsular: GPi DBS: p = 0.79; Vim DBS: p = 0.68); non-capsular: GPi DBS: p = 0.20; and Vim DBS: p = 0.35). Linear mixed-effect models revealed no differences between intraoperative and postoperative assessments, although the Vim had significantly lower thresholds (capsular side-effects p = 0.01, non-capsular side-effects p < 0.01). Unpaired survival analyses demonstrated lower intraoperative than postoperative thresholds for capsular side-effects in patients under GPi DBS (p = 0.01), while higher intraoperative thresholds for non-capsular side-effects in patients under Vim DBS (p = 0.01).Conclusion: There were no significant differences between intraoperative and postoperative assessments of GPi and Vim DBS, although thresholds cannot be directly extrapolated at an individual level due to high variability.


2021 ◽  
Author(s):  
Syed Faaiz Enam ◽  
Brian J Kang ◽  
Johnathan G Lyon ◽  
Ravi V Bellamkonda

Chronic stimulation of and recording from the brain and brain diseases can require expensive apparatus and tedious cycles of inducing rodents with anesthesia. To resolve this, we have designed and fabricated a low-cost (~$75 vs. $450) DIY rodent caging apparatus consisting of commercially available and 3D-printed components. This apparatus is customizable and can be used to rapidly prototype devices with large rodent sample sizes. Importantly, it enables continuous and chronic stimulation of and recording from the brains of awake and freely moving rodents. It also opens the possibilities of trying complex paradigms of treatment (continuous, intermittent, variable, and chronic). We have successfully used this caging apparatus for chronic intratumoral hypothermia treatment and are currently using it while advancing electrotactic therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Safa Dehmani ◽  
Véronique Nerrière-Daguin ◽  
Mélanie Néel ◽  
Nathan Elain-Duret ◽  
Jean-Marie Heslan ◽  
...  

A numerous number of positive and negative signals via various molecules modulate T-cell activation. Within the various transmembrane proteins, SIRPγ is of interest since it is not expressed in rodents. SIRPγ interaction with CD47 is reevaluated in this study. Indeed, we show that the anti-SIRPγ mAb clone LSB2.20 previously used by others has not been appropriately characterized. We reveal that the anti-SIRPα clone KWAR23 is a Pan anti-SIRP mAb which efficiently blocks SIRPα and SIRPγ interactions with CD47. We show that SIRPγ expression on T cells varies with their differentiation and while being expressed on Tregs, is not implicated in their suppressive functions. SIRPγ spatial reorganization at the immune synapse is independent of its interaction with CD47. In vitro SIRPα-γ/CD47 blockade with KWAR23 impairs IFN-γ secretion by chronically activated T cells. In vivo in a xeno-GvHD model in NSG mice, the SIRPγ/CD47 blockade with the KWAR23 significantly delays the onset of the xeno-GvHD and deeply impairs human chimerism. In conclusion, we have shown that T-cell interaction with CD47 is of importance notably in chronic stimulation.


2021 ◽  
Author(s):  
Vikas Arige ◽  
Lara E. Terry ◽  
Sundeep Malik ◽  
Taylor R. Knebel ◽  
Larry E. Wagner ◽  
...  

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a central role in regulating intracellular calcium signals in response to a variety of internal/external cues. Dysregulation of IP3R signaling is the underlying cause for numerous pathological conditions. It is well established that the activities of IP3Rs are governed by several post-translational modifications including phosphorylation by protein kinase A (PKA). However, the long-term effects of PKA activation on expression of IP3R sub-types, remains largely unexplored. In this report, we investigate the effects of more chronic stimulation and tonic activity of PKA on the expression of IP3R sub-types. We demonstrate that the expression of IP3R1 is augmented upon prolonged activation of PKA or upon ectopic over-expression of CREB without altering IP3R2 and IP3R3 abundance. Conversely, inhibition of PKA or blocking CREB diminished IP3R1 expression. We also demonstrate that agonist-induced Ca2+-release mediated by IP3R1 is significantly attenuated upon blocking CREB. Moreover, CREB by regulating the expression of KRAS-induced actin-interacting protein (KRAP) ensures proper localization and licensing of IP3R1. Overall, we report a crucial role for CREB in governing both the expression and proper localization of IP3R1.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Timir Datta-Chaudhuri

AbstractMouse models have been of tremendous benefit to medical science for the better part of a century, yet bioelectronic medicine research using mice has been limited to mostly acute studies because of a lack of tools for chronic stimulation and sensing. A wireless neuromodulation platform small enough for implantation in mice will significantly increase the utility of mouse models in bioelectronic medicine. This perspective examines the necessary functionality of such a system and the technical challenges needed to be overcome for its development. Recent progress is examined and the outlook for the future of implantable devices for mice is discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251495
Author(s):  
Julia Chu-Ning Hsu ◽  
Shin-ichi Sekizawa ◽  
Ryota Tochinai ◽  
Masayoshi Kuwahara

Baroreflex dysfunction is partly implicated in hypertension and one responsible region is the dorsal medulla oblongata including the nucleus tractus solitarius (NTS). NTS neurons receive and project glutamatergic inputs to subsequently regulate blood pressure, while G-protein-coupled metabotropic glutamate receptors (mGluRs) play a modulatory role for glutamatergic transmission in baroreflex pathways. Stimulating group II mGluR subtype 2 and 3 (mGluR2/3) in the brainstem can decrease blood pressure and sympathetic nervous activity. Here, we hypothesized that the chronic stimulation of mGluR2/3 in the dorsal medulla oblongata can alleviate hypertensive development via the modulation of autonomic nervous activity in young, spontaneously hypertensive rats (SHRs). Compared with that in the sham control group, chronic LY379268 application (mGluR2/3 agonist; 0.40 μg/day) to the dorsal medulla oblongata for 6 weeks reduced the progression of hypertension in 6-week-old SHRs as indicated by the 40 mmHg reduction in systolic blood pressure and promoted their parasympathetic nervous activity as evidenced by the heart rate variability. No differences in blood catecholamine levels or any echocardiographic indices were found between the two groups. The improvement of reflex bradycardia, a baroreflex function, appeared after chronic LY379268 application. The mRNA expression level of mGluR2, but not mGluR3, in the dorsal medulla oblongata was substantially reduced in SHRs compared to that of the control strain. In conclusion, mGluR2/3 signaling might be responsible for hypertension development in SHRs, and modulating mGluR2/3 expression/stimulation in the dorsal brainstem could be a novel therapeutic strategy for hypertension via increasing the parasympathetic activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mayura V. Wagle ◽  
Stephin J. Vervoort ◽  
Madison J. Kelly ◽  
Willem Van Der Byl ◽  
Timothy J. Peters ◽  
...  

AbstractChronic stimulation of CD8+ T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets. Here, we show that chronic antigen induces the anergy-associated transcription factor EGR2 selectively within progenitor exhausted cells in both chronic LCMV and tumours. EGR2 enables terminal exhaustion and stabilizes the exhausted transcriptional state by both direct EGR2-dependent control of key exhaustion-associated genes, and indirect maintenance of the exhausted epigenetic state. We show that EGR2 is a regulator of exhaustion that epigenetically and transcriptionally maintains the differentiation competency of progenitor exhausted cells.


2021 ◽  
Vol 128 (7) ◽  
pp. 887-907
Author(s):  
Maria Luisa S. Sequeira-Lopez ◽  
R. Ariel Gomez

Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 438
Author(s):  
Jean Harb ◽  
Nicolas Mennesson ◽  
Cassandra Lepetit ◽  
Maeva Fourny ◽  
Margaux Louvois ◽  
...  

Chronic stimulation by infectious pathogens or self-antigen glucosylsphingosine (GlcSph) can lead to monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Novel assays such as the multiplex infectious antigen microarray (MIAA) and GlcSph assays, permit identification of targets for >60% purified monoclonal immunoglobulins (Igs). Searching for additional targets, we selected 28 purified monoclonal Igs whose antigen was not represented on the MIAA and GlcSph assays; their specificity of recognition was then analyzed using microarrays consisting of 3760 B-cell epitopes from 196 pathogens. The peptide sequences PALTAVETG and PALTAAETG of the VP1 coat proteins of human poliovirus 1/3 and coxsackievirus B1/B3, respectively, were specifically recognized by 6/28 monoclonal Igs. Re-analysis of patient cohorts showed that purified monoclonal Igs from 10/155 MGUS/SM (6.5%) and 3/147 MM (2.0%) bound to the PALTAVETG or PALTAAETG epitopes. Altogether, PALTAV/AETG-initiated MGUS are not rare and few seem to evolve toward myeloma.


Sign in / Sign up

Export Citation Format

Share Document