scholarly journals Comparison between the phase angle and phase shift parameters to assess thoracoabdominal asynchrony in COPD patients

2017 ◽  
Vol 122 (5) ◽  
pp. 1106-1113
Author(s):  
Desiderio Cano Porras ◽  
Adriana C. Lunardi ◽  
Cibele C. B. Marques da Silva ◽  
Denise M. Paisani ◽  
Rafael Stelmach ◽  
...  

Determining the presence of thoracoabdominal asynchrony in chronic obstructive pulmonary disease (COPD) patients is clinically relevant, but there is no consensus on the optimal parameters for performing this analysis. We assessed 22 COPD patients (FEV1 40 ± 10% predicted) and 13 healthy controls during rest and exercise with optoelectronic plethysmography (70% maximum workload) on a cycle ergometer. Thoracoabdominal asynchrony was calculated by using phase angle and phase shift parameters following a three-compartment model involving the upper and lower rib cages and abdomen. Patients were classified as having thoracoabdominal asynchrony (TAA+) or not (TAA−) based on control values (mean ± 2 SDs). The chest wall volume and compartmental contribution were also measured. Thoracoabdominal asynchrony was observed in the lower rib cage. The phase angle detected more TAA+ patients at rest (15 vs. 7 patients) and during exercise (14 vs. 8 patients) compared with the phase shift. TAA+ patients also presented a lower chest wall volume, lower rib cage contribution, and higher abdominal contribution to chest wall volume compared with the control and TAA− patients. Thoracoabdominal asynchrony was more detectable during rest and exercise using the phase angle parameter, and it was observed in the lower rib cage compartment, reducing the chest wall volume during exercise in patients with COPD. NEW & NOTEWORTHY This study contributes to advance the knowledge over the previous lack of consensus on the assessment of thoracoabdominal asynchrony. We rigorously evaluated the related features that interfere in the measurement of the asynchrony (measurement tool, chest wall model and calculation parameter). Our results suggest that phase angle detects more suitably thoracoabdominal asynchrony that occurs on the lower ribcage and leads to a reduction in the chest wall volume during exercise in COPD patients.

2013 ◽  
Vol 114 (8) ◽  
pp. 1066-1075 ◽  
Author(s):  
Rita Priori ◽  
Andrea Aliverti ◽  
André L. Albuquerque ◽  
Marco Quaranta ◽  
Paul Albert ◽  
...  

Chronic obstructive pulmonary disease (COPD) patients often show asynchronous movement of the lower rib cage during spontaneous quiet breathing and exercise. We speculated that varying body position from seated to supine would influence rib cage asynchrony by changing the configuration of the respiratory muscles. Twenty-three severe COPD patients (forced expiratory volume in 1 s = 32.5 ± 7.0% predicted) and 12 healthy age-matched controls were studied. Measurements of the phase shift between upper and lower rib cage and between upper rib cage and abdomen were performed with opto-electronic plethysmography during quiet breathing in the seated and supine position. Changes in diaphragm zone of apposition were measured by ultrasounds. Control subjects showed no compartmental asynchronous movement, whether seated or supine. In 13 COPD patients, rib cage asynchrony was noticed in the seated posture. This asynchrony disappeared in the supine posture. In COPD, upper rib cage and abdomen were synchronous when seated, but a strong asynchrony was found in supine. The relationships between changes in diaphragm zone of apposition and volume variations of chest wall compartments supported these findings. Rib cage paradox was noticed in approximately one-half of the COPD patients while seated, but was not related to impaired diaphragm motion. In the supine posture, the rib cage paradox disappeared, suggesting that, in this posture, diaphragm mechanics improves. In conclusion, changing body position induces important differences in the chest wall behavior in COPD patients.


1992 ◽  
Vol 72 (3) ◽  
pp. 1032-1038 ◽  
Author(s):  
M. R. Wolfson ◽  
J. S. Greenspan ◽  
K. S. Deoras ◽  
J. L. Allen ◽  
T. H. Shaffer

To determine the influence of body position on chest wall and pulmonary function, we studied the ventilatory, pulmonary mechanics, and thoracoabdominal motion profiles in 20 preterm infants recovering from respiratory disease who were positioned in both the supine and prone position. Thoracoabdominal motion was assessed from measurements of relative rib cage and abdominal movement and the calculated phase angle (an index of thoracoabdominal synchrony) of the rib and abdomen Lissajous figures. The ventilatory and pulmonary function profiles were assessed from simultaneous measurements of transpulmonary pressure, airflow, and tidal volume. The infants were studied in quiet sleep, and the order of positioning was randomized across patients. The results demonstrated no significant difference in ventilatory and pulmonary function measurements as a function of position. In contrast, there was a significant reduction (-49%) in the phase angle of the Lissajous figures and an increase (+66%) in rib cage motion in prone compared with the supine position. In addition, the degree of improvement in phase angle in the prone position was correlated to the severity of asynchrony in the supine position. We speculate that the improvement in thoracoabdominal synchrony in the prone position is related to alterations of chest wall mechanics and respiratory muscle tone mediated by a posturally related shift in the area of apposition of the diaphragm to the anterior inner rib cage wall and increase in passive tension of the muscles of the rib cage. This study suggests that the mechanical advantage associated with prone positioning may confer a useful alternative breathing pattern to the preterm infant in whom elevated respiratory work loads and respiratory musculoskeletal immaturity may predispose to respiratory failure.


1980 ◽  
Vol 49 (3) ◽  
pp. 408-416 ◽  
Author(s):  
J. Nagels ◽  
F. J. Landser ◽  
L. van der Linden ◽  
J. Clement ◽  
K. P. Van de Woestijne

Using a forced oscillation technique, we measured the resistance (Rrs) and reactance (Xrs) of the respiratory system between 2 and 32 Hz at three different lung volumes in 15 healthy subjects and 7 patients with chronic obstructive pulmonary disease. Rrs and Xrs were partitioned, by means of a pressure recording in the esophagus, into the resistance and reactance of lung and airways (L) and the chest wall. The measurements were validated by checking the adequacy of the frequency response of the esophagus, by the lack of difference between thoracic and mouth flow, by an estimation of the error introduced by the shunt impedance of the cheeks, and by comparisons with the values of pulmonary compliance and resistance determined in the same subjects with classical techniques. In both healthy subjects and patients, the chest wall has a low resistance that increases somewhat at low lung volumes and behaves functionally as a two-compartment system, with low capacitance at frequencies exceeding 4 Hz. Rrs varies with lung volume and is markedly frequency dependent in patients; both phenomena are due primarily to corresponding variations of RL. In healthy subjects, at and above functional residual capacity (FRC) level, the lungs behave as a one-compartment system, the reactance of which is mainly determined by the gaseous inertance, at least beyond 2 Hz. In patients and in healthy subjects breathing below FRC, the observed frequency dependence of resistance and the simultaneous increase in resonant frequency can be simulated satisfactorily by Mead's two-compartment model, assuming a large increase in peripheral airways resistance.


2012 ◽  
Vol 44 (6) ◽  
pp. 1049-1056 ◽  
Author(s):  
GIULIA INNOCENTI BRUNI ◽  
FRANCESCO GIGLIOTTI ◽  
BARBARA BINAZZI ◽  
ISABELLA ROMAGNOLI ◽  
ROBERTO DURANTI ◽  
...  

2016 ◽  
Vol 121 (2) ◽  
pp. 391-400 ◽  
Author(s):  
André De Troyer ◽  
Theodore A. Wilson

When the diaphragm contracts, pleural pressure falls, exerting a caudal and inward force on the entire rib cage. However, the diaphragm also exerts forces in the cranial and outward direction on the lower ribs. One of these forces, the “insertional force,” is applied by the muscle at its attachments to the lower ribs. The second, the “appositional force,” is due to the transmission of abdominal pressure to the lower rib cage in the zone of apposition. In the control condition at functional residual capacity, the effects of these two forces on the lower ribs are nearly equal and outweigh the effect of pleural pressure, whereas for the upper ribs, the effect of pleural pressure is greater. The balance between these effects, however, may be altered. When the abdomen is given a mechanical support, the insertional and appositional forces are increased, so that the muscle produces a larger expansion of the lower rib cage and, with it, a smaller retraction of the upper rib cage. In contrast, at higher lung volumes the zone of apposition is decreased, and pleural pressure is the dominant force on the lower ribs as well. Consequently, although the force exerted by the diaphragm on these ribs remains inspiratory, rib displacement is reversed into a caudal-inward displacement. This mechanism likely explains the inspiratory retraction of the lateral walls of the lower rib cage observed in many subjects with chronic obstructive pulmonary disease (Hoover's sign). These observations support the use of a three-compartment, rather than a two-compartment, model to describe chest wall mechanics.


1993 ◽  
Vol 74 (4) ◽  
pp. 1570-1580 ◽  
Author(s):  
C. Guerin ◽  
M. L. Coussa ◽  
N. T. Eissa ◽  
C. Corbeil ◽  
M. Chasse ◽  
...  

By use of the technique of rapid airway occlusion, the effects of inspiratory flow, volume, and time on lung and chest wall mechanics were investigated in 10 chronic obstructive pulmonary disease (COPD) patients mechanically ventilated for acute respiratory failure. We measured the interrupter resistance (Rint), which in humans reflects airway resistance; the additional resistances due to time constant inequality and viscoelastic pressure dissipations within the lungs (delta RL) and the chest wall; and the static and dynamic elastances of lung and chest wall. We observed that 1) static elastances of lung and chest wall in COPD patients were similar to those of normal subjects; 2) Rint of the lung was markedly increased and flow dependent in COPD patients, whereas Rint of the chest wall was negligible as in normal subjects; and 3) in COPD patients, delta RL was markedly increased at all inflation flows and volumes, reflecting increased time constant inequalities within the lungs and/or altered viscoelastic behavior. The results imply increased dynamic work due to Rint and delta RL and marked time dependency of pulmonary resistance and elastance in COPD patients.


2016 ◽  
Vol 42 (2) ◽  
pp. 121-129 ◽  
Author(s):  
André Luis Pereira de Albuquerque ◽  
Marco Quaranta ◽  
Biswajit Chakrabarti ◽  
Andrea Aliverti ◽  
Peter M. Calverley

Objective: Pulmonary rehabilitation (PR) improves exercise capacity in most but not all COPD patients. The factors associated with treatment success and the role of chest wall mechanics remain unclear. We investigated the impact of PR on exercise performance in COPD with severe hyperinflation. Methods: We evaluated 22 COPD patients (age, 66 ± 7 years; FEV1 = 37.1 ± 11.8% of predicted) who underwent eight weeks of aerobic exercise and strength training. Before and after PR, each patient also performed a six-minute walk test and an incremental cycle ergometer test. During the latter, we measured chest wall volumes (total and compartmental, by optoelectronic plethysmography) and determined maximal workloads. Results: We observed significant differences between the pre- and post-PR means for six-minute walk distance (305 ± 78 vs. 330 ± 96 m, p < 0.001) and maximal workload (33 ± 21 vs. 39 ± 20 W; p = 0.02). At equivalent workload settings, PR led to lower oxygen consumption, carbon dioxide production (VCO2), and minute ventilation. The inspiratory (operating) rib cage volume decreased significantly after PR. There were 6 patients in whom PR did not increase the maximal workload. After PR, those patients showed no significant decrease in VCO2 during exercise, had higher end-expiratory chest wall volumes with a more rapid shallow breathing pattern, and continued to experience symptomatic leg fatigue. Conclusions: In severe COPD, PR appears to improve oxygen consumption and reduce VCO2, with a commensurate decrease in respiratory drive, changes reflected in the operating chest wall volumes. Patients with severe post-exercise hyperinflation and leg fatigue might be unable to improve their maximal performance despite completing a PR program.


2006 ◽  
Vol 101 (5) ◽  
pp. 1297-1302 ◽  
Author(s):  
Sanford Levine ◽  
Taitan Nguyen ◽  
Michael Friscia ◽  
Jianliang Zhu ◽  
Wilson Szeto ◽  
...  

Studies in experimental animals indicate that chronic increases in neural drive to limb muscles elicit a fast-to-slow transformation of fiber-type proportions and myofibrillar proteins. Since neural drive to the parasternal intercostal muscles (parasternals) is chronically increased in patients with severe chronic obstructive pulmonary diseases (COPDs), we carried out the present study to test the hypothesis that the parasternals of COPD patients exhibit an increase in the proportions of both slow fibers and slow myosin heavy chains (MHCs). Accordingly, we obtained full thickness parasternal muscle biopsies from the third interspace of seven COPD patients (mean ± SE age: 59 ± 4 yr) and seven age-matched controls (AMCs). Fiber typing was done by immunohistochemistry, and MHC proportions were determined by SDS-PAGE followed by densitometry. COPD patients exhibited higher proportions of slow fibers than AMCs (73 ± 4 vs. 51 ± 3%; P < 0.01). Additionally, COPD patients exhibited higher proportions of slow MHC than AMCs (56 ± 4 vs. 46 ± 4%, P < 0.04). We conclude that the parasternal muscles of patients with severe COPD exhibit a fast-to-slow transformation in both fiber-type and MHC proportions. Previous workers have demonstrated that remodeling of the external intercostals, another rib cage inspiratory muscle, elicited by severe COPD is characterized by a slow-to-fast transformation in both fiber types and MHC isoform proportions. The physiological significance of this difference in remodeling between these two inspiratory rib cage muscles remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document