Respiratory mechanics during high-frequency oscillatory ventilation: a physical model and preterm infant study

2012 ◽  
Vol 112 (7) ◽  
pp. 1105-1113 ◽  
Author(s):  
Rachana Singh ◽  
Sherry E. Courtney ◽  
Michael D. Weisner ◽  
Robert H. Habib

Accurate mechanics measurements during high-frequency oscillatory ventilation (HFOV) facilitate optimizing ventilator support settings. Yet, these are influenced substantially by endotracheal tube (ETT) contributions, which may dominate when leaks around uncuffed ETT are present. We hypothesized that 1) the effective removal of ETT leaks may be confirmed via direct comparison of measured vs. model-predicted mean intratracheal pressure [mPtr (meas) vs. mPtr (pred)], and 2) reproducible respiratory system resistance (Rrs) and compliance (Crs) may be derived from no-leak oscillatory Ptr and proximal flow. With the use of ETT test-lung models, proximal airway opening (Pao) and distal (Ptr) pressures and flows were measured during slow-cuff inflations until leaks are removed. These were repeated for combinations of HFOV settings [frequency, mean airway pressure (Paw), oscillation amplitudes (ΔP), and inspiratory time (%tI)] and varying test-lung Crs. Results showed that leaks around the ETT will 1) systematically reduce the effective distending pressures and lung-delivered oscillatory volumes, and 2) derived mechanical properties are increasingly nonphysiologic as leaks worsen. Mean pressures were systematically reduced along the ventilator circuit and ETT (Paw > Pao > Ptr), even for no-leak conditions. ETT size-specific regression models were then derived for predicting mPtr based on mean Pao (mPao), ΔP, %tI, and frequency. Next, in 10 of 11 studied preterm infants (0.77 ± 0.24 kg), no-to-minimal leak was confirmed based on excellent agreement between mPtr (meas) and mPtr (pred), and consequently, their oscillatory respiratory mechanics were evaluated. Infant resistance at the proximal ETT (RETT; resistance airway opening = RETT + Rrs; P < 0.001) and ETT inertance ( P = 0.014) increased significantly with increasing ΔP (50%, 100%, and 150% baseline), whereas Rrs showed a modest, nonsignificant increase ( P = 0.14), and Crs was essentially unchanged ( P = 0.39). We conclude that verifying no-leak conditions is feasible by comparison of model-derived vs. distending mPtr (meas). This facilitated the reliable and accurate assessment of physiologic respiratory mechanical properties that can objectively guide ventilatory management of HFOV-treated preterm infants.

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098491
Author(s):  
Yan Li ◽  
Qiufen Wei ◽  
Dan Zhao ◽  
Yan Mo ◽  
Liping Yao ◽  
...  

Objective To investigate the effectiveness and safety of non-invasive high-frequency oscillatory ventilation (NHFOV) in post-extubation preterm infants. Methods This was a randomized, controlled trial. A total of 149 preterm infants aged between 25 to 34 weeks’ gestational age with a birth weight of <1500 g who required invasive mechanical ventilation on admission were included. After extubation, they were randomized to the NHFOV group (n = 47), nasal intermittent positive pressure ventilation (NIPPV) group (n = 51), or nasal continuous positive airway pressure (NCPAP) group (n = 51). We compared the effectiveness and safety among these three groups. Results A total of 139 preterm infants finally completed the study. The reintubation rate was significantly lower in the NHFOV group than in the other groups. The duration of non-invasive ventilation and the length of hospital stay in the NHFOV and NIPPV groups were significantly shorter than those in the NCPAP group. The incidence of bronchopulmonary dysplasia in the NHFOV and NIPPV groups was significantly lower than that in the NCPAP group. The NHFOV group had significantly less nasal injury than the NCPAP group. Conclusion As post-extubation respiratory support in preterm infants, NHFOV has a lower reintubation rate compared with NCPAP and NIPPV, without increasing the rate of complications.


1998 ◽  
Vol 26 (Supplement) ◽  
pp. 118A ◽  
Author(s):  
Bala Totapally ◽  
Andre Raszynski ◽  
Jeff Sussmane ◽  
Karl Hultquist ◽  
Javier Hernandez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document