scholarly journals In vivo intramuscular fascicle-aponeuroses dynamics of the human medial gastrocnemius during plantarflexion and dorsiflexion of the foot

2009 ◽  
Vol 107 (4) ◽  
pp. 1276-1284 ◽  
Author(s):  
David D. Shin ◽  
John A. Hodgson ◽  
V. Reggie Edgerton ◽  
Shantanu Sinha

Velocity-encoded phase-contrast magnetic resonance (MR) imaging techniques and a computer-controlled MR-compatible foot pedal device were used to investigate the medial gastrocnemius muscle and aponeurosis deformations during passive and active eccentric movements of the plantarflexors. Intrafascicular strain, measured as the ratio of strain in the fascicle segment at its insertion to strain at its origin, was nonuniform along the proximodistal axis of the muscle ( P < 0.01), progressively increasing from the proximal to distal direction. The high intrafascicular strain regions appeared to correlate with the muscle regions that are likely to encounter high stress concentrations, i.e., the regions where the muscle physiological cross section decreases close to the tendons. The architectural gear ratio, i.e., the mechanical amplification ratio of fascicle length displacement to that of tendon/aponeuroses in a pennate muscle, also exhibited significant regional differences, with the highest ratios in the proximal region of the muscle accompanied by a higher initial pennation angle and a larger range of fascicular rotation about the origin. Values close to unity in the distal region of the muscle suggest that the aponeurosis separation may decrease in this region. Fascicle length and pennation angle changes were significantly influenced by force generation in the muscle, probably due to a shortening of the loaded muscle fibers relative to a passive condition. Overall, our data illustrate significant proximodistal intramuscular heterogeneity as supported by a regionally variable end-to-end strain ratio of fascicles and angle changes in the medial gastrocnemius muscle during passive and active ankle movements. These observations emphasize the need to reassess current conceptual models of muscle-tendon mechanics.

2019 ◽  
Vol 127 (4) ◽  
pp. 1005-1011 ◽  
Author(s):  
Todd J. Hullfish ◽  
Kathryn M. O’Connor ◽  
Josh R. Baxter

Deficits in plantarflexor kinetics are associated with poor outcomes in patients following Achilles tendon rupture. In this longitudinal study, we analyzed the fascicle length and pennation angle of the medial gastrocnemius muscle and the length of the Achilles tendon using ultrasound imaging. To determine the relationship between muscle remodeling and deficits in plantarflexor kinetics measured at 14 wk after injury, we correlated the reduction in fascicle length and increase in pennation angle with peak torque measured during isometric and isokinetic plantarflexor contractions. We found that the medial gastrocnemius underwent an immediate change in structure, characterized by decreased length and increased pennation of the muscle fascicles. This decrease in fascicle length was coupled with an increase in tendon length. These changes in muscle-tendon structure persisted throughout the first 14 wk following rupture. Deficits in peak plantarflexor torque were moderately correlated with decreased fascicle length at 120 degrees per second ( R2 = 0.424, P = 0.057) and strongly correlated with decreased fascicle length at 210 degrees per second ( R2 = 0.737, P = 0.003). However, increases in pennation angle did not explain functional deficits. These findings suggest that muscle-tendon structure is detrimentally affected following Achilles tendon rupture. Plantarflexor power deficits are positively correlated with the magnitude of reductions in fascicle length. Preserving muscle structure following Achilles tendon rupture should be a clinical priority to maintain plantarflexor kinetics. NEW & NOTEWORTHY In our study, we found that when the Achilles tendon ruptures due to excessive biomechanical loading, the neighboring skeletal muscle undergoes rapid changes in its configuration. The magnitude of this muscle remodeling explains the amount of ankle power loss demonstrated by these patients once their Achilles tendons are fully healed. These findings highlight the interconnected relationship between muscle and tendon. Isolated injuries to the tendon stimulate detrimental changes to the muscle, thereby limiting joint-level function.


2018 ◽  
Vol 44 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Francesco Cenni ◽  
Simon-Henri Schless ◽  
Lynn Bar-On ◽  
Guy Molenaers ◽  
Anja Van Campenhout ◽  
...  

1996 ◽  
Vol 81 (2) ◽  
pp. 933-942 ◽  
Author(s):  
C. J. De Ruiter ◽  
P. E. Habets ◽  
A. de Haan ◽  
A. J. Sargeant

The purpose of the present study was to investigate to what extent fast-twitch IIX and IIB fiber recruitment was related to the natural existing muscle compartments (subvolumes of muscle innervated by different primary nerve branches) in rat medial gastrocnemius. Three groups (n = 6) of rats trotted on a motor-driven treadmill (20 degrees incline) at different speeds. A fourth group served as controls, and a fifth group received in situ electrical stimulation of all medial gastrocnemius muscle fibers. Postexercise glycogen levels (periodic acid-Schiff staining intensities) were made. Running caused more and in situ stimulation caused less glycogen breakdown in the proximal IIX and IIB fibers compared with the fibers of the same type in the most distal compartment. Furthermore, the boundaries of the most distal compartment could often be recognized in the periodic acid-Schiff-stained cross sections. It was concluded that during running the proximal IIX and IIB fibers were recruited to a greater extent (and at lower treadmill speeds) compared with the distal IIX and IIB fibers, respectively.


2000 ◽  
Vol 170 (2) ◽  
pp. 127-135 ◽  
Author(s):  
K. Kubo ◽  
H. Kanehisa ◽  
D. Takeshita ◽  
Y. Kawakami ◽  
S. Fukashiro ◽  
...  

2019 ◽  
Author(s):  
Todd J. Hullfish ◽  
Kathryn M. O’Connor ◽  
Josh R. Baxter

ABSTRACTPlantarflexor functional deficits are associated with poor outcomes in patients following Achilles tendon rupture. In this longitudinal study, we analyzed the fascicle length and pennation angle of the medial gastrocnemius muscle and the length of the Achilles tendon using ultrasound imaging. To determine the relationship between muscle remodeling and functional deficits measured at 3 months after injury, we correlated the reduction in fascicle length and increase in pennation angle with peak torque measured during isometric plantarflexor contractions and peak power measured during isokinetic plantarflexor contractions. We found that the medial gastrocnemius underwent an immediate change in structure, characterized by decreased length and increased pennation of the muscle fascicles. This decrease in fascicle length was coupled with an increase in tendon length. These changes in muscle-tendon structure persisted throughout the first three months following rupture. Deficits in peak plantarflexor power were moderately correlated with decreased fascicle length at 120 degrees per second (R2= 0.424,P= 0.057) and strongly correlated with decreased fascicle length at 210 degrees per second (R2= 0.737,P= 0.003). However, increases in pennation angle did not explain functional deficits. These findings suggest that muscle-tendon structure is detrimentally affected following Achilles tendon rupture. Plantarflexor power deficits are positively correlated with the magnitude of reductions in fascicle length. Preserving muscle structure following Achilles tendon rupture should be a clinical priority to maintain patient function.


2002 ◽  
Vol 92 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Tadashi Muramatsu ◽  
Tetsuro Muraoka ◽  
Yasuo Kawakami ◽  
Akira Shibayama ◽  
Tetsuo Fukunaga

Fascicle curvature of human medial gastrocnemius muscle (MG) was determined in vivo by ultrasonography during isometric contractions at three (distal, central, and proximal) locations ( n = 7) and at three ankle angles ( n = 7). The curvature significantly ( P < 0.05) increased from rest to maximum voluntary contraction (MVC) (0.4–5.2 m−1). In addition, the curvature at MVC became larger in the order dorsiflexed, neutral, plantar flexed ( P < 0.05). Thus both contraction levels and muscle length affected the curvature. Intramuscular differences in neither the curvature nor the fascicle length were found. The direction of curving was consistent along the muscle: fascicles were concave in the proximal side. Fascicle length estimated from the pennation angle and muscle thickness, under the assumption that the fascicle was straight, was underestimated by ∼6%. In addition, the curvature was significantly correlated to pennation angle and muscle thickness. These findings are particularly important for understanding the mechanical functions of human skeletal muscle in vivo.


2014 ◽  
Vol 117 (9) ◽  
pp. 1020-1026 ◽  
Author(s):  
Keitaro Kubo

The aims of this study were to 1) directly assess active muscle stiffness according to actual length changes in muscle fibers (fascicles) during short range stretching; and 2) compare actual measured active muscle and tendon stiffness using ultrasonography with the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in series elastic component of plantar flexors using the alpha method. Twenty-four healthy men volunteered for this study. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions [10, 30, 50, 70, and 90% maximal voluntary contractions (MVC)]. Using the variables measured during this fast stretch experiment, the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in plantar flexors was assessed using alpha method. Tendon stiffness was determined during isometric plantar flexion by ultrasonography. Active muscle stiffness increased with the exerted torque levels. At 30, 50, 70, and 90% MVC, there were no significant correlations between muscle stiffness using ultrasonography and stiffness of active part (i.e., muscle) by alpha method, although this relationship at 10% MVC was significant ( r = 0.552, P = 0.005). In addition, no correlation was noted in tendon stiffness between the two different methods ( r = 0.226, P = 0.209). The present study demonstrated that ultrasonography could quantified active muscle stiffness in vivo. Furthermore, active muscle stiffness and tendon stiffness using ultrasonography were not related to active (i.e., muscle) or passive (i.e., tendon) stiffness in series elastic component of plantar flexors by alpha method.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0032
Author(s):  
Kathryn M O’Connor ◽  
Todd J. Hullfish ◽  
Josh R. Baxter

Category: Sports, Trauma, Achilles Tendon Introduction/Purpose: Two out of three patients Achilles tendon ruptures have limited plantarflexor function 1-year following Achilles tendon rupture. While tendon elongation has been reported as a possible mechanism of functional deficits, the effects of rupture on plantarflexor muscle structure has not been as rigorously investigated. A recent study found that gastrocnemius fascicle length was decreased 6-months following Achilles tendon rupture compared to the uninjured limb. However, the changes in muscle structure following the first month of injury – when the healing tendon is most susceptible to elongation – has not yet been established. The purpose of this study was to quantify the structural changes to the medial gastrocnemius in patients who suffered acute Achilles tendon ruptures and were treated non-operatively. Methods: To test our hypothesis that plantarflexor structure would undergo rapid remodeling following Achilles tendon rupture, we quantified muscle structure in ten patients (9 male, Age: 44 ± 12; BMI: 28.6 ± 6.5) who provide informed written consent in this IRB approved study. We acquired B-mode ultrasound images of the medial gastrocnemius muscle at the initial presentation (week 0), two weeks, and four weeks following the injury. The same investigator acquired all the ultrasound images and measured fascicle length, pennation angle, muscle thickness, and echo intensity. These measurements had a coefficient of variation less than 10%. We compared these structural measurements of the injured muscle at each time point with the contralateral muscle scans at the initial presentation using paired t-tests. Results: Gastrocnemius muscle structure following an acute Achilles tendon rupture differed with the healthy-contralateral muscle throughout the first four weeks following injury (Figure). Fascicle length was 15% shorter (P < 0.001) and pennation angle was 21% greater (P < 0.001) at the presentation of injury (week 0). These differences in fascicle length (P < 0.001) and pennation angle persisted throughout the 4 weeks after the injury (P < 0.008). Muscle thickness changes were not detected at any of the post-injury visits. Muscle quality, measured as mean echo intensity, was 8% lower in the injured limb immediately (P= 0.008) and 11% lower 2 weeks following injury (P < 0.001). At week 4 muscle quality had returned to within 1% of the contralateral limb (P = 0.393). Conclusion: Our findings support our hypothesis that the gastrocnemius muscle fascicles of the affected side would demonstrate shorter length and greater pennation angle than the contralateral control muscle. These findings are a preliminary set of data from a larger clinical cohort of patients that were enrolled in an ongoing 1-year long prospective study. Achilles tendon ruptures elicit rapid changes in the configuration and quality of the medial gastrocnemius, which may explain long-term functional deficits.


Sign in / Sign up

Export Citation Format

Share Document