muscle structure
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 72)

H-INDEX

44
(FIVE YEARS 5)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3467
Author(s):  
Jaśmina Bałaban ◽  
Marlena Zielińska ◽  
Mateusz Wierzbicki ◽  
Teresa Ostaszewska ◽  
Magdalena Fajkowska ◽  
...  

The effects of CEME and it complex with GO injected in ovo on the growth and development of chicken embryo hindlimb muscle were investigated. First, the preliminary in vitro study on primary muscle precursor cell culture obtained from a nine-day-old chicken embryo was performed to assess toxicity (MTT assay) of CEME, GO (100 ppm) and it complex with different concentrations (1, 2, 5, and 10 wt.%). The effect on cell proliferation was investigated by BrdU assay. CEME at concentrations 1–5% increased cell proliferation, but not the complex with GO. In vitro cytotoxicity was highest in 10% and GO groups. Next, the main experiment with chicken embryos was performed with CEME, GO and it complex injected in ovo on day one of embryogenesis. On day 20 of embryogenesis survival, morphological development, histological structure of the muscle, and biochemical parameters of blood serum of the embryos were measured. No negative effect on mortality, body weight, or biochemistry of blood after use of CEME or GO-CEME complexes was observed. Interestingly, the slight toxicity of GO, observed in in vitro studies, was not observed in vivo. The use of CEME at the levels of 2% and 5% improved the structure of the lower limb muscle by increasing the number of cells, and the administration of 2% CEME increased the number of nuclei visible in the stained cross-section of the muscle. The complex GO-CEME did not further improve the muscle structure. The results indicate that CEME can be applied as an in ovo enhancer of muscle development in broilers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leila Lesanpezeshki ◽  
Hiroshi Qadota ◽  
Masoud Norouzi Darabad ◽  
Karishma Kashyap ◽  
Carla M. R. Lacerda ◽  
...  

Abstract Background Caenorhabditis elegans has been widely used as a model to study muscle structure and function. Its body wall muscle is functionally and structurally similar to vertebrate skeletal muscle with conserved molecular pathways contributing to sarcomere structure, and muscle function. However, a systematic investigation of the relationship between muscle force and sarcomere organization is lacking. Here, we investigate the contribution of various sarcomere proteins and membrane attachment components to muscle structure and function to introduce C. elegans as a model organism to study the genetic basis of muscle strength. Methods We employ two recently developed assays that involve exertion of muscle forces to investigate the correlation of muscle function to sarcomere organization. We utilized a microfluidic pillar-based platform called NemaFlex that quantifies the maximum exertable force and a burrowing assay that challenges the animals to move in three dimensions under a chemical stimulus. We selected 20 mutants with known defects in various substructures of sarcomeres and compared the physiological function of muscle proteins required for force generation and transmission. We also characterized the degree of sarcomere disorganization using immunostaining approaches. Results We find that mutants with genetic defects in thin filaments, thick filaments, and M-lines are generally weaker, and our assays are successful in detecting the functional changes in response to each sarcomere location tested. We find that the NemaFlex and burrowing assays are functionally distinct informing on different aspects of muscle physiology. Specifically, the burrowing assay has a larger bandwidth in phenotyping muscle mutants, because it could pick ten additional mutants impaired while exerting normal muscle force in NemaFlex. This enabled us to combine their readouts to develop an integrated muscle function score that was found to correlate with the score for muscle structure disorganization. Conclusions Our results highlight the suitability of NemaFlex and burrowing assays for evaluating muscle physiology of C. elegans. Using these approaches, we discuss the importance of the studied sarcomere proteins for muscle function and structure. The scoring methodology we have developed enhances the utility of  C. elegans as a genetic model to study muscle function.


2021 ◽  
Vol 153 (10) ◽  
Author(s):  
John M. Squire ◽  
Carlo Knupp

X-ray diffraction studies of muscle have provided a wealth of information on muscle structure and physiology, and the meridian of the diffraction pattern is particularly informative. Reconditi et al. (2014. J. Physiol.https://doi.org/10.1113/jphysiol.2013.267849) performed superb experiments on changes to the M3 meridional peak as a function of sarcomere length (SL). They found that the M3 intensity dropped almost linearly as sarcomere length increased at least to about SL = 3.0 µm, and that it followed the same track as tension, pointing toward zero at the end of overlap at ∼3.6 µm. They concluded that, just as tension could only be generated by overlapped myosin heads, so ordered myosin heads contributing to the M3 intensity could only occur in the overlap region of the A-band, and that nonoverlapped heads must be highly disordered. Here we show that this conclusion is not consistent with x-ray diffraction theory; it would not explain their observations. We discuss one possible reason for the change in M3 intensity with increasing sarcomere length in terms of increasing axial misalignment of the myosin filaments that at longer sarcomere lengths is limited by the elastic stretching of the M-band and titin.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Jing ◽  
Xichun Jiang ◽  
Cuiyun Zhu ◽  
Qi Zheng ◽  
Qianyun Ji ◽  
...  

Abstract Background miRNA is one of the crucial roles in the complex and dynamic network that regulates the development of skeletal muscle. The landscape of skeletal muscle miRNAs from fetus to adult in New Zealand rabbits has not been revealed yet. Results In this study, nine RNA-seq libraries of fetus, child and adult rabbits’ leg muscles were constructed. A total of 278 differentially expressed miRNAs (DEmiRNAs) were identified. In the fetus vs. child group, the main functional enrichments were involved in membrane and transport. Pathway enriched terms of up-regulated DEmiRNAs were connected with the differentiation and hypertrophy of skeletal muscle, and down-regulated ones were related to muscle structure and metabolic capacity. In the child vs. adult group, functions were associated to positioning and transportation, and pathways were relevant to ECM, muscle structure and hypertrophy. Finally, ocu-miR-185-3p and ocu-miR-370-3p, which had the most target genes, were identified as hub-miRNAs in these two groups. Conclusions In short, we summarized the highly expressed and uniquely expressed DEmiRNAs of fetus, child and adult rabbits’ leg muscles. Besides, the potential functional changes of miRNAs in two consecutive stages have been explored. Among them, the ocu-miR-185-3p and ocu-miR-370-3p with the most target genes were selected as hub-miRNAs. These data improved the understanding of the regulatory molecules of meat rabbit development, and provided a novel perspective for molecular breeding of meat rabbits.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Joshua Mattock ◽  
Julie R. Steele ◽  
Karen J. Mickle

Abstract Background Medial tibial stress syndrome (MTSS) is a common lower leg injury experienced by runners. Although numerous risk factors are reported in the literature, many are non-modifiable and management of the injury remains difficult. Lower leg muscle structure and function are modifiable characteristics that influence tibial loading during foot-ground contact. Therefore, this study aimed to determine whether long-distance runners with MTSS displayed differences in in vivo lower leg muscle structure and function than matched asymptomatic runners. Methods Lower leg structure was assessed using ultrasound and a measure of lower leg circumference to quantify muscle cross-sectional area, thickness and lean lower leg girth. Lower leg function was assessed using a hand-held dynamometer to quantify maximal voluntary isometric contraction strength and a single leg heel raise protocol was used to measure ankle plantar flexor endurance. Outcome variables were compared between the limbs of long-distance runners suffering MTSS (n = 20) and matched asymptomatic controls (n = 20). Means, standard deviations, 95 % confidence intervals, mean differences and Cohen’s d values were calculated for each variable for the MTSS symptomatic and control limbs. Results MTSS symptomatic limbs displayed a significantly smaller flexor hallucis longus cross-sectional area, a smaller soleus thickness but a larger lateral gastrocnemius thickness than the control limbs. However, there was no statistical difference in lean lower leg girth. Compared to the matched control limbs, MTSS symptomatic limbs displayed deficits in maximal voluntary isometric contraction strength of the flexor hallucis longus, soleus, tibialis anterior and peroneal muscles, and reduced ankle plantar flexor endurance capacity. Conclusions Differences in lower leg muscle structure and function likely render MTSS symptomatic individuals less able to withstand the negative tibial bending moment generated during midstance, potentially contributing to the development of MTSS. The clinical implications of these findings suggest that rehabilitation protocols for MTSS symptomatic individuals should aim to improve strength of the flexor hallucis longus, soleus, tibialis anterior and peroneal muscles along with ankle plantar flexor endurance. However, the cross-sectional study design prevents us determining whether between group differences were a cause or effect of MTSS. Therefore, future prospective studies are required to substantiate the study findings.


2021 ◽  
pp. 130721
Author(s):  
Camille Renaud ◽  
Marie de Lamballerie ◽  
Claire Guyon ◽  
Thierry Astruc ◽  
Annie Venien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document