Active muscle stiffness in the human medial gastrocnemius muscle in vivo

2014 ◽  
Vol 117 (9) ◽  
pp. 1020-1026 ◽  
Author(s):  
Keitaro Kubo

The aims of this study were to 1) directly assess active muscle stiffness according to actual length changes in muscle fibers (fascicles) during short range stretching; and 2) compare actual measured active muscle and tendon stiffness using ultrasonography with the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in series elastic component of plantar flexors using the alpha method. Twenty-four healthy men volunteered for this study. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions [10, 30, 50, 70, and 90% maximal voluntary contractions (MVC)]. Using the variables measured during this fast stretch experiment, the stiffness of active (i.e., muscle) and passive (i.e., tendon) parts in plantar flexors was assessed using alpha method. Tendon stiffness was determined during isometric plantar flexion by ultrasonography. Active muscle stiffness increased with the exerted torque levels. At 30, 50, 70, and 90% MVC, there were no significant correlations between muscle stiffness using ultrasonography and stiffness of active part (i.e., muscle) by alpha method, although this relationship at 10% MVC was significant ( r = 0.552, P = 0.005). In addition, no correlation was noted in tendon stiffness between the two different methods ( r = 0.226, P = 0.209). The present study demonstrated that ultrasonography could quantified active muscle stiffness in vivo. Furthermore, active muscle stiffness and tendon stiffness using ultrasonography were not related to active (i.e., muscle) or passive (i.e., tendon) stiffness in series elastic component of plantar flexors by alpha method.

Healthcare ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Masatoshi Nakamura ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Kaoru Yahata ◽  
Taizan Fukaya ◽  
...  

Background: Previous studies suggest that the capacity for rapid force production of ankle plantar flexors is essential for the prevention of falls in the elderly. In healthy young adults, there were significant associations between rate of force development and muscle stiffness measured by shear wave elastography. However, there has been no study investigating the association of rate of force development with shear elastic modulus in older adults. Methods: The muscle strength and shear elastic modulus of the medial gastrocnemius muscle in both legs were measured in 17 elderly men and 10 elderly women (mean ± SD; 70.7 ± 4.1 years; 160.6 ± 8.0 cm; 58.7 ± 9.5 kg). We investigated the rate of force development of plantar flexors and shear elastic modulus of medial gastrocnemius muscle using by shear wave elastography. Results: Our results showed that there were no significant associations between normalized rate of force development and shear elastic modulus of medial gastrocnemius muscle. Conclusion: This suggests that the capacity of rapid force production could be related not to muscle stiffness of the medial gastrocnemius muscle, but to neuromuscular function in older individuals.


2018 ◽  
Vol 44 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Francesco Cenni ◽  
Simon-Henri Schless ◽  
Lynn Bar-On ◽  
Guy Molenaers ◽  
Anja Van Campenhout ◽  
...  

1996 ◽  
Vol 81 (2) ◽  
pp. 933-942 ◽  
Author(s):  
C. J. De Ruiter ◽  
P. E. Habets ◽  
A. de Haan ◽  
A. J. Sargeant

The purpose of the present study was to investigate to what extent fast-twitch IIX and IIB fiber recruitment was related to the natural existing muscle compartments (subvolumes of muscle innervated by different primary nerve branches) in rat medial gastrocnemius. Three groups (n = 6) of rats trotted on a motor-driven treadmill (20 degrees incline) at different speeds. A fourth group served as controls, and a fifth group received in situ electrical stimulation of all medial gastrocnemius muscle fibers. Postexercise glycogen levels (periodic acid-Schiff staining intensities) were made. Running caused more and in situ stimulation caused less glycogen breakdown in the proximal IIX and IIB fibers compared with the fibers of the same type in the most distal compartment. Furthermore, the boundaries of the most distal compartment could often be recognized in the periodic acid-Schiff-stained cross sections. It was concluded that during running the proximal IIX and IIB fibers were recruited to a greater extent (and at lower treadmill speeds) compared with the distal IIX and IIB fibers, respectively.


2000 ◽  
Vol 170 (2) ◽  
pp. 127-135 ◽  
Author(s):  
K. Kubo ◽  
H. Kanehisa ◽  
D. Takeshita ◽  
Y. Kawakami ◽  
S. Fukashiro ◽  
...  

2009 ◽  
Vol 107 (4) ◽  
pp. 1276-1284 ◽  
Author(s):  
David D. Shin ◽  
John A. Hodgson ◽  
V. Reggie Edgerton ◽  
Shantanu Sinha

Velocity-encoded phase-contrast magnetic resonance (MR) imaging techniques and a computer-controlled MR-compatible foot pedal device were used to investigate the medial gastrocnemius muscle and aponeurosis deformations during passive and active eccentric movements of the plantarflexors. Intrafascicular strain, measured as the ratio of strain in the fascicle segment at its insertion to strain at its origin, was nonuniform along the proximodistal axis of the muscle ( P < 0.01), progressively increasing from the proximal to distal direction. The high intrafascicular strain regions appeared to correlate with the muscle regions that are likely to encounter high stress concentrations, i.e., the regions where the muscle physiological cross section decreases close to the tendons. The architectural gear ratio, i.e., the mechanical amplification ratio of fascicle length displacement to that of tendon/aponeuroses in a pennate muscle, also exhibited significant regional differences, with the highest ratios in the proximal region of the muscle accompanied by a higher initial pennation angle and a larger range of fascicular rotation about the origin. Values close to unity in the distal region of the muscle suggest that the aponeurosis separation may decrease in this region. Fascicle length and pennation angle changes were significantly influenced by force generation in the muscle, probably due to a shortening of the loaded muscle fibers relative to a passive condition. Overall, our data illustrate significant proximodistal intramuscular heterogeneity as supported by a regionally variable end-to-end strain ratio of fascicles and angle changes in the medial gastrocnemius muscle during passive and active ankle movements. These observations emphasize the need to reassess current conceptual models of muscle-tendon mechanics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Kaoru Yahata ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Riku Yoshida ◽  
...  

A stretching intervention program is performed to maintain and improve range of motion (ROM) in sports and rehabilitation settings. However, there is no consensus on the effects of stretching programs on muscle stiffness, likely due to short stretching durations used in each session. Therefore, a longer stretching exercise session may be required to decrease muscle stiffness in the long-term. Moreover, until now, the retention effect (detraining) of such an intervention program is not clear yet. The purpose of this study was to investigate the training (5-week) and detraining effects (5-week) of a high-volume stretching intervention on ankle dorsiflexion ROM (DF ROM) and medial gastrocnemius muscle stiffness. Fifteen males participated in this study and the plantarflexors of the dominant limb were evaluated. Static stretching intervention was performed using a stretching board for 1,800 s at 2 days per week for 5 weeks. DF ROM was assessed, and muscle stiffness was calculated from passive torque and muscle elongation during passive dorsiflexion test. The results showed significant changes in DF ROM and muscle stiffness after the stretching intervention program, but the values returned to baseline after the detraining period. Our results indicate that high-volume stretching intervention (3,600 s per week) may be beneficial for DF ROM and muscle stiffness, but the training effects are dismissed after a detraining period with the same duration of the intervention.


Sign in / Sign up

Export Citation Format

Share Document