Multiple Modes of Action Potential Initiation and Propagation in Mitral Cell Primary Dendrite

2002 ◽  
Vol 88 (5) ◽  
pp. 2755-2764 ◽  
Author(s):  
Wei R. Chen ◽  
Gongyu Y. Shen ◽  
Gordon M. Shepherd ◽  
Michael L. Hines ◽  
Jens Midtgaard

The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na+ action potentials were recorded along the entire length of the primary dendritic trunk. With weak-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated in the distal primary dendrite but failed to propagate to the soma. As the inhibition became weaker, a “double-spike” was often observed at the dendritic recording site, corresponding to a single action potential at the soma. Simulation demonstrated that, in the course of forward propagation of the first dendritic spike, the action potential suddenly jumps from the middle of the dendrite to the axonal spike-initiation site, leaving the proximal part of primary dendrite unexcited by this initial dendritic spike. As Na+conductances in the proximal dendrite are not activated, they become available to support the back-propagation of the evoked somatic action potential to produce the second dendritic spike. In summary, the balance of spatially distributed excitatory and inhibitory inputs can dynamically switch the mitral cell firing among four different modes: axo-somatic initiation with back-propagation, dendritic initiation either with no forward propagation, forward propagation alone, or forward propagation followed by back-propagation.

2007 ◽  
Vol 97 (5) ◽  
pp. 3460-3472 ◽  
Author(s):  
Julian P. Meeks ◽  
Steven Mennerick

Thin, unmyelinated axons densely populate the mammalian hippocampus and cortex. However, the location and dynamics of spike initiation in thin axons remain unclear. We investigated basic properties of spike initiation and propagation in CA3 neurons of juvenile rat hippocampus. Sodium channel alpha subunit distribution and local applications of tetrodotoxin demonstrate that the site of first threshold crossing in CA3 neurons is ∼35 μm distal to the soma, somewhat more proximal than our previous estimates. This discrepancy can be explained by the finding, obtained with simultaneous whole cell somatic and extracellular axonal recordings, that a zone of axon stretching to ∼100 μm distal to the soma reaches a maximum rate of depolarization nearly synchronously by the influx of sodium from the high-density channels. Models of the proximal axon incorporating observed distributions of sodium channel staining recapitulated salient features of somatic and axonal spike waveforms, including the predicted initiation zone, characteristic spike latencies, and conduction velocity. The preferred initiation zone was unaltered by stimulus strength or repetitive spiking, but repetitive spiking increased threshold and significantly slowed initial segment recruitment time and conduction velocity. Our work defines the dynamics of initiation and propagation in hippocampal principal cell axons and may help reconcile recent controversies over initiation site in other axons.


1999 ◽  
Vol 82 (6) ◽  
pp. 3006-3020 ◽  
Author(s):  
Gongyu Y. Shen ◽  
Wei R. Chen ◽  
Jens Midtgaard ◽  
Gordon M. Shepherd ◽  
Michael L. Hines

In olfactory mitral cells, dual patch recordings show that the site of action potential initiation can shift between soma and distal primary dendrite and that the shift is dependent on the location and strength of electrode current injection. We have analyzed the mechanisms underlying this shift, using a model of the mitral cell that takes advantage of the constraints available from the two recording sites. Starting with homogeneous Hodgkin-Huxley-like Na+-K+ channel distribution in the soma-dendritic region and much higher sodium channel density in the axonal region, the model's channel kinetics and density were adjusted by a fitting algorithm so that the model response was virtually identical to the experimental data. The combination of loading effects and much higher sodium channel density in the axon relative to the soma-dendritic region results in significantly lower “voltage threshold” for action potential initiation in the axon; the axon therefore fires first unless the voltage gradient in the primary dendrite is steep enough for it to reach its higher threshold. The results thus provide a quantitative explanation for the stimulus strength and position dependence of the site of action potential initiation in the mitral cell.


1998 ◽  
Vol 80 (2) ◽  
pp. 715-729 ◽  
Author(s):  
Hans-R. Lüscher ◽  
Matthew E. Larkum

Lüscher, Hans-R. and Matthew E. Larkum. Modeling action potential initiation and back-propagation in dendrites of cultured rat motoneurons. J. Neurophysiol. 80: 715–729, 1998. Regardless of the site of current injection, action potentials usually originate at or near the soma and propagate decrementally back into the dendrites. This phenomenon has been observed in neocortical pyramidal cells as well as in cultured motoneurons. Here we show that action potentials in motoneurons can be initiated in the dendrite as well, resulting in a biphasic dendritic action potential. We present a model of spinal motoneurons that is consistent with observed physiological properties of spike initiation in the initial segment/axon hillock region and action potential back-propagation into the dendritic tree. It accurately reproduces the results presented by Larkum et al. on motoneurons in organotypic rat spinal cord slice cultures. A high Na+-channel density of ḡ Na = 700 mS/cm2 at the axon hillock/initial segment region was required to secure antidromic invasion of the somato-dendritic membrane, whereas for the orthodromic direction, a Na+-channel density of ḡ Na = 1,200 mS/cm2 was required. A “weakly” excitable ( ḡ Na = 3 mS/cm2) dendritic membrane most accurately describes the experimentally observed attenuation of the back-propagated action potential. Careful analysis of the threshold conditions for action potential initiation at the initial segment or the dendrites revealed that, despite the lower voltage threshold for spike initiation in the initial segment, an action potential can be initiated in the dendrite before the initial segment fires a spike. Spike initiation in the dendrite depends on the passive cable properties of the dendritic membrane, its Na+-channel density, and local structural properties, mainly the diameter of the dendrites. Action potentials are initiated more easily in distal than in proximal dendrites. Whether or not such a dendritic action potential invades the soma with a subsequent initiation of a second action potential in the initial segment depends on the actual current source-load relation between the action potential approaching the soma and the electrical load of the soma together with the attached dendrites.


2008 ◽  
Vol 586 (7) ◽  
pp. 1849-1857 ◽  
Author(s):  
Christoph Schmidt-Hieber ◽  
Peter Jonas ◽  
Josef Bischofberger

1978 ◽  
Vol 76 (1) ◽  
pp. 63-84 ◽  
Author(s):  
W. J. HEITLER ◽  
COREY S. GOODMAN

Recordings were made from the metathoracic dorsal unpaired median neurone to the extensor tibiae muscle (DUMETi) in the locust. This is a bifurcating neurone with axons exiting both sideS of the ganglion, whose soma can support a full action potential. Four different spike types were recorded in the soma, each of which we associate with a different region of the neurone. These were (1) a soma (S) spike of 70-90 mV, (2) a neurite (N) spike of 20-40 mV, occurring between the axon hillock and axon branch point, (3) and (4) axon (A) spikes of 8–15 mV, occurring distal to the branch point on the left and right axons. Each of these regions must therefore have its own spike initiation site. At spike frequencies greater than about 10 Hz at room temperature or 1-5 Hz at 32 °C (the preferred environmental temperature of the locust) the S-spike may fail, revealing A-spikes, or more rarely N-spikes. A-spikes usually consist of two more-or-less separate components, Al and Ar, which can be correlated with action potentials in the left and right axon branches by recording spikes extracellularly in the peripheral nerves on each side. Occasionally single component A-spikes occur when an action potential is initiated in only one axon, and fails to propagate across the branch point to the contralateral axon. Thus, action potentials may occur independently in the branches of this bifurcating neurone. After unilateral axotomy only S-spikes and N-spikes are recorded, indicating that action potentials no longer fail to propagate across the branch point. Anatomical asymmetries in the axon branches of DUMETi have been correlated with physiological asymmetries recorded in the soma of the same neurone.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Ricardo S. Scott ◽  
Christian Henneberger ◽  
Ragunathan Padmashri ◽  
Stefanie Anders ◽  
Thomas P. Jensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document