initiation zone
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 9 (6) ◽  
pp. 1381-1398
Author(s):  
Fumitoshi Imaizumi ◽  
Atsushi Ikeda ◽  
Kazuki Yamamoto ◽  
Okihiro Ohsaka

Abstract. Debris flows are one of the most destructive sediment transport processes in mountainous areas because of their large volume, high velocity, and kinematic energy. Debris flow activity varies over time and is affected by changes in hydrogeomorphic processes in the initiation zone. To clarify temporal changes in debris flow activities in cold regions, the rainfall threshold for the debris flow occurrence was evaluated in Osawa failure at a high elevation on Mt. Fuji, Japan. We conducted field monitoring of the ground temperature near a debris flow initiation zone to estimate the presence or absence of seasonally frozen ground during historical rainfall events. The effects of ground freezing and the accumulation of channel deposits on the rainfall threshold for debris flow occurrence were analyzed using rainfall records and annual changes in the volume of channel deposits since 1969. Statistical analyses showed that the intensity–duration threshold during frozen periods was clearly lower than that during unfrozen periods. A comparison of maximum hourly rainfall intensity and total rainfall also showed that debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. Decreases in the infiltration rate due to the formation of frozen ground likely facilitated the generation of overland flow, triggering debris flows. The results suggest that the occurrence of frozen ground and the sediment storage volume need to be monitored and estimated for better debris flow disaster mitigation in cold regions.


2021 ◽  
Author(s):  
Daniel S Dopp ◽  
Pranit S Samarth ◽  
Jing S Wang ◽  
Daniel R Kick ◽  
David J Schulz ◽  
...  

The crustacean cardiac ganglion (CG) network coordinates the rhythmic contractions of the heart muscle to control the circulation of blood. The network consists of 9 cells, 5 large motor cells (LC1-5) and 4 small endogenous pacemaker cells (SCs). We report a new three-compartmental biophysical model of an LC that is morphologically realistic and includes provision for inputs from the SCs via a gap-junction coupled spike-initiation-zone (SIZ) compartments. To determine physiologically viable LC models in this realistic configuration, maximal conductances in three compartments of an LC are determined by random sampling from a biologically-characterized 9D-parameter space, followed by a three stage rejection protocol that checks for conformity with electrophysiological features from single cell traces. LC models that pass the single cell rejection protocol are then incorporated into a network model which is then used in a final rejection protocol stage. Using disparate experimental data, the study provides hitherto unknown structure-function insights related to the crustacean cardiac ganglion large cell, including predictions about morphology including the role of its SIZ, and the differential roles of active conductances in the three compartments. Further, we extend analyses of emergent conductance relationships and correlations in model neurons relative to their biological counterparts, allowing us to make inferences both with respect to the biological system as well as the implications of the ability to detect such relationships in populations of model neurons going forward.


2021 ◽  
Author(s):  
Fumitoshi Imaizumi ◽  
Atsushi Ikeda ◽  
Kazuki Yamamoto ◽  
Okihiro Osaka

Abstract. Debris flows are one of the most destructive sediment transport processes in mountainous areas because of their large volume, high velocity, and kinematic energy. Debris flow activity varies over time and is affected by changes in hydrogeomorphic processes in the initiation zone. To clarify temporal changes of debris flow activities in cold regions, the rainfall threshold for the debris flow occurrence was evaluated in Osawa failure at a high elevation on Mt. Fuji, Japan. We conducted field monitoring of the ground temperature near a debris flow initiation zone to estimate the presence or absence of seasonally frozen ground during historical rainfall events. The effects of ground freezing and the accumulation of channel deposits on the rainfall threshold for debris flow occurrence were analyzed using rainfall records and annual changes in the volume of channel deposits since 1969. Statistical analyses showed that the intensity-duration threshold during frozen periods was clearly lower than that during unfrozen periods. A comparison of maximum hourly rainfall intensity and total rainfall also showed that debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. Decreases in the infiltration rate due to the formation of frozen ground likely facilitated the generation of overland flow, triggering debris flows. During unfrozen periods, the rainfall threshold was higher when the volume of channel deposits was larger. Increases in the water content in channel deposits caused by the infiltration of rainfall is likely important for the debris flow occurrence during unfrozen periods. The results suggest that the occurrence of frozen ground and the sediment storage volume need to be monitored and estimated for better debris flow disaster mitigation in cold regions.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 117
Author(s):  
Maria Filomena Loreto ◽  
Camilla Palmiotto ◽  
Filippo Muccini ◽  
Valentina Ferrante ◽  
Nevio Zitellini

The southern part of Tyrrhenian back-arc basin (NW Sicily), formed due to the rifting and spreading processes in back-arc setting, is currently undergoing contractional tectonics. The analysis of seismic reflection profiles integrated with bathymetry, magnetic data and seismicity allowed us to map a widespread contractional tectonics structures, such as positive flower structures, anticlines and inverted normal faults, which deform the sedimentary sequence of the intra-slope basins. Two main tectonic phases have been recognised: (i) a Pliocene extensional phase, active during the opening of the Vavilov Basin, which was responsible for the formation of elongated basins bounded by faulted continental blocks and controlled by the tear of subducting lithosphere; (ii) a contractional phase related to the Africa-Eurasia convergence coeval with the opening of the Marsili Basin during the Quaternary time. The lithospheric tear occurred along the Drepano paleo-STEP (Subduction-Transform-Edge-Propagator) fault, where the upwelling of mantle, intruding the continental crust, formed a ridge. Since Pliocene, most of the contractional deformation has been focused along this ridge, becoming a good candidate for a future subduction initiation zone.


Geomorphology ◽  
2021 ◽  
Vol 375 ◽  
pp. 107529
Author(s):  
Haruka Tsunetaka ◽  
Norifumi Hotta ◽  
Fumitoshi Imaizumi ◽  
Yuichi S. Hayakawa ◽  
Takeshi Masui

2021 ◽  
Vol 11 ◽  
Author(s):  
E. Jean Finnegan ◽  
Masumi Robertson ◽  
Chris A. Helliwell

The reproductive success of many plants depends on their capacity to respond appropriately to their environment. One environmental cue that triggers flowering is the extended cold of winter, which promotes the transition from vegetative to reproductive growth in a response known as vernalization. In annual plants of the Brassicaceae, the floral repressor, FLOWERING LOCUS C (FLC), is downregulated by exposure to low temperatures. Repression is initiated during winter cold and then maintained as the temperature rises, allowing plants to complete their life cycle during spring and summer. The two stages of FLC repression, initiation and maintenance, are distinguished by different chromatin states at the FLC locus. Initiation involves the removal of active chromatin marks and the deposition of the repressive mark H3K27me3 over a few nucleosomes in the initiation zone, also known as the nucleation region. H3K27me3 then spreads to cover the entire locus, in a replication dependent manner, to maintain FLC repression. FLC is released from repression in the next generation, allowing progeny of a vernalized plant to respond to winter. Activation of FLC in this generation has been termed resetting to denote the restoration of the pre-vernalized state in the progeny of a vernalized plant. It has been assumed that resetting must differ from the activation of FLC expression in progeny of plants that have not experienced winter cold. Considering that there is now strong evidence indicating that chromatin undergoes major modifications during both male and female gametogenesis, it is time to challenge this assumption.


2021 ◽  
Vol 250 ◽  
pp. 06012
Author(s):  
Jean-Benoît Kopp ◽  
Jérémie Girardot

The fracture behaviour of a specific material, a semi-crystalline biobased polymer, was here studied. Dynamic fracture tests on strip band specimens were carried out. Fracture surfaces were observed at different scales by optical and electron microscopy to describe cracking scenarios. Crack initiation, propagation and arrest zones were described. Three distinct zones are highlighted in the initiation and propagation zone: a zone with conical markings, a mist zone and a hackle zone. The conical mark zone shows a variation in the size and density of the conical marks along the propagation path. This is synonymous with local speed variation. Microcracks at the origin of the conical marks in the initiation zone seem to develop from the nucleus of the spherulites. In the propagation zone with complex roughness, the direction of the microcracks and their cracking planes are highly variable. Their propagation directions are disturbed by the heterogeneities of the material. They branch or bifurcate at the level of the spherulites. In the arrest zone, the microcracks developed upstream continue to propagate in different directions. The surface created is increasingly smoother as the energy release rate decreases. It is shown that the local velocity of the crack varies in contrast to the macroscopic speed.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2461 ◽  
Author(s):  
Yuanzhe Dong ◽  
Yujian Ren ◽  
Shuqin Fan ◽  
Yongfei Wang ◽  
Shengdun Zhao

A notch-induced high-speed splitting method was developed for high-quality cropping of metal bars using a new type of electric-pneumatic counter hammer. Theoretical equations and FE models were established to reveal the crack initiation and fracture mode. Comparative tests were conducted for notched and unnotched bars of four types of steels, i.e., AISI 1020, 1045, 52100, and 304, and the section quality and microfracture mechanism were further investigated. The results show that damage initiates at the bilateral notch tips with peak equivalent plastic strain, and propagates through the plane induced by the notch tip; the stress triaxiality varies as a quasi-sine curve, revealing that the material is subjected to pure shearing at the notch tip, and under compression at the adjacent region. High precision chamfered billets were obtained with roundness errors of 1.1–2.8%, bending deflections of 0.5–1.5mm, and angles of inclination of 0.7°–3.4°. Additionally, the notch effectively reduced the maximum impact force by 21.6–23.9%, splitting displacement by 7.6–18.6%, and impact energy by 27.8–39.1%. The crack initiation zone displayed quasi-parabolic shallow dimples due to shear stress, and the pinning effect was larger in AISI 52100 and 1045 steel; the final rupture zone was characterized by less elongated and quasi-equiaxial deeper dimples due to the combination of shear and normal stress.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2107
Author(s):  
Zhangjianing Cheng ◽  
Xiaojian Cao ◽  
Xiaoli Xu ◽  
Qiangru Shen ◽  
Tianchong Yu ◽  
...  

The effect of nano grain surface layer generated by ultrasonic impact on the fatigue behaviors of a titanium alloy Ti3Zr2Sn3Mo25Nb (TLM) was investigated. Three vibration strike-numbers of 24,000 times, 36,000 times and 48,000 times per unit are chosen to treat the surface of TLM specimens. Nanocrystals with an average size of 30 nm are generated. The dislocation motion plays an important role in the transformation of nanograins. Ultrasonic surface impact improves the mechanical properties of TLM, such as hardness, surface residual stress, tensile strength and fatigue strength. More vibration strike numbers will cause a higher enhancement. With a vibration strike number of 48,000 times per square millimeter the rotating-bending fatigue strength of TLM at 107 cycles is improved by 23.7%. All the fatigue cracks initiate from the surface of untreated specimens, while inner cracks appear after the fatigue life of 106 cycles with the ultrasonic surface impact. The crystal slip in the crack initiation zone is the main way of growth for microcracks. Crack cores are usually formed at the junction of crystals. The stress intensity factor of TLM titanium alloy is approximately 7.0 MPa·m1/2.


Sign in / Sign up

Export Citation Format

Share Document