How Retinal Ganglion Cells Prevent Synaptic Noise From Reaching the Spike Output

2004 ◽  
Vol 92 (4) ◽  
pp. 2510-2519 ◽  
Author(s):  
Jonathan B. Demb ◽  
Peter Sterling ◽  
Michael A. Freed

Synaptic vesicles are released stochastically, and therefore stimuli that increase a neuron's synaptic input might increase noise at its spike output. Indeed this appears true for neurons in primary visual cortex, where spike output variability increases with stimulus contrast. But in retinal ganglion cells, although intracellular recordings (with spikes blocked) showed that stronger stimuli increase membrane fluctuations, extracellular recordings showed that noise at the spike output is constant. Here we show that these seemingly paradoxical findings occur in the same cell and explain why. We made intracellular recordings from ganglion cells, in vitro, and presented periodic stimuli of various contrasts. For each stimulus cycle, we measured the response at the stimulus frequency (F1) for both membrane potential and spikes as well as the spike rate. The membrane and spike F1 response increased with contrast, but noise (SD) in the F1 responses and the spike rate was constant. We also measured membrane fluctuations (with spikes blocked) during the response depolarization and found that they did increase with contrast. However, increases in fluctuation amplitude were small relative to the depolarization (<10% at high contrast). A model based on estimated synaptic convergence, release rates, and membrane properties accounted for the relative magnitudes of fluctuations and depolarization. Furthermore, a cell's peak spike response preceded the peak depolarization, and therefore fluctuation amplitude peaked as the spike response declined. We conclude that two extremely general properties of a neuron, synaptic convergence and spike generation, combine to minimize the effects of membrane fluctuations on spiking.

1997 ◽  
Vol 78 (2) ◽  
pp. 614-627 ◽  
Author(s):  
Naoki Kogo ◽  
Michael Ariel

Kogo, Naoki and Michael Ariel. Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. J. Neurophysiol. 78: 614–627, 1997. Using an eye-attached isolated brain stem preparation of a turtle, Pseudemys scripta elegans, in conjunction with whole cell patch techniques, we recorded intracellular activity of accessory optic system neurons in the basal optic nucleus (BON). This technique offered long-lasting stable recordings of individual synaptic events. In the reduced preparation (most of the dorsal structures were removed), large spontaneous excitatory synaptic inputs [excitatory postsynaptic potentials (EPSPs)] were frequently recorded. Spontaneous inhibitory postsynaptic potentials were rarely observed except in few cases. Most EPSPs disappeared after injection of lidocaine into the retina. A few EPSPs of small size remained, suggesting that these EPSPs either were from intracranial sources or may have been miniature spontaneous synaptic potentials from retinal ganglion cell axon terminals. Population EPSPs were synchronously evoked by electrical stimulation of the contralateral optic nerve. Their constant onset latency and their ability to follow short-interval paired stimulation indicated that much of the population EPSP's response was monosynaptic. Visually evoked BON spikes and EPSP inputs to BON showed direction sensitivity when a moving pattern was projected onto the entire contralateral retina. With the use of smaller moving patterns, the receptive field of an individual BON cell was identified. A small spot of light, projected within the receptive field, guided the placement of a bipolar stimulation electrode to activate retinal ganglion cells that provided input to that BON cell. EPSPs evoked by this retinal microstimulation showed features of unitary EPSPs. Those EPSPs had distinct low current thresholds. Recruitment of other inputs was only evident when the stimulation level was increased substantially above threshold. The average size of evoked unitary EPSPs was 7.8 mV, confirming the large size of synaptic inputs of this system relative to nonsynaptic noise. EPSP shape was plotted (rise time vs. amplitude), with the use of either evoked unitary EPSPs or spontaneous EPSPs. Unlike samples of spontaneous EPSPs, data from many unitary EPSPs formed distinct clusters in these scatterplots, indicating that these EPSPs had a unique shape among the whole population of EPSPs. In most BON cells studied, hyperpolarization-activated channels caused a slow depolarization sag that reached a plateau within 0.5–1 s. This property suggests that BON cells may be more complicated than a simple site for convergence of direction-sensitive retinal ganglion cells to form a central retinal slip signal for control of oculomotor reflexes.


Cell Reports ◽  
2018 ◽  
Vol 25 (8) ◽  
pp. 2017-2026.e3 ◽  
Author(s):  
Wan-Qing Yu ◽  
Rana N. El-Danaf ◽  
Haruhisa Okawa ◽  
Justin M. Pacholec ◽  
Ulf Matti ◽  
...  

1998 ◽  
Vol 79 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Guo-Yong Wang ◽  
David W. Robinson ◽  
Leo M. Chalupa

Wang, Guo-Yong, David W. Robinson, and Leo M. Chalupa. Calcium-activated potassium conductances in retinal ganglion cells of the ferret. J. Neurophysiol. 79: 151–158, 1998. Patch-clamp recordings were made from isolated and intact retinal ganglion cells (RGCs) of the ferret to examine the calcium-activated potassium channels expressed by these neurons and to determine their functional role in the generation of spikes and spiking patterns. Single-channel recordings from isolated neurons revealed the presence of two calcium-sensitive potassium channels that had conductances of 118 and 22 pS. The properties of these two channels were shown to be similar to those ascribed to the large-conductance calcium-activated potassium channel (BKCa) and small-conductance calcium-activated potassium channel (SKCa) channels in other neurons. Whole cell recordings from isolated RGCs showed that apamin and charybdotoxin (CTX), specific blockers of the SKCa and BKCa channels, respectively, resulted in a shortening of the time to threshold and a reduction in the hyperpolarization after the spike. Addition of these blockers also resulted in a significant increase in spike frequency over a wide range of maintained depolarizations. Similar effects of apamin and CTX were observed during current-clamp recordings from intact alpha and beta ganglion cells, morphologically identified after Lucifer yellow filling. About 20% of these neurons did not exhibit a sensitivity to either blocker, suggesting the presence of functionally distinct subgroups of alpha and beta RGCs on the basis of their intrinsic membrane properties. The expression of these calcium-activated potassium channels in the majority of alpha and beta cells provides a means by which the activity of these output neurons could be modulated by retinal neurochemicals.


2019 ◽  
Author(s):  
Yanli Ran ◽  
Ziwei Huang ◽  
Tom Baden ◽  
Harald Baayen ◽  
Philipp Berens ◽  
...  

ABSTRACTNeural computation relies on the integration of synaptic inputs across a neuron’s dendritic arbour. However, the fundamental rules that govern dendritic integration are far from understood. In particular, it is still unclear how cell type-specific differences in dendritic integration arise from general features of neural morphology and membrane properties. Here, retinal ganglion cells (RGCs), which relay the visual system’s first computations to the brain, represent an exquisite model. They are functionally and morphologically diverse yet defined, and they allow studying dendritic integration in a functionally relevant context. Here, we show how four morphologically distinct types of mouse RGC with shared excitatory synaptic input (transient Off alpha, transient Off mini, sustained Off, and F-miniOff) exhibit distinct dendritic integration rules. Using two-photon imaging of dendritic calcium signals and biophysical modelling, we demonstrate that these RGC types strongly differ in their spatio-temporal dendritic integration: In transient Off alpha cells, dendritic receptive fields displayed little spatial overlap, indicative of a dendritic arbour that is partitioned in largely isolated regions. In contrast, dendritic receptive fields in the other three RGCs overlapped greatly and were offset to the soma, suggesting strong synchronization of dendritic signals likely due to backpropagation of somatic signals. Also temporal correlation of dendritic signals varied extensively among these types, with transient Off mini cells displaying the highest correlation across their dendritic arbour. Modelling suggests that morphology alone cannot explain these differences in dendritic integration, but instead specific combinations of dendritic morphology and ion channel densities are required. Together, our results reveal how neurons exhibit distinct dendritic integration profiles tuned towards their type-specific computations in their circuits, with the interplay between morphology and ion channel complement as a key contributor.


2021 ◽  
Author(s):  
Artem Pinchuk

Abstract Magnocellular-projecting retinal ganglion cells show spike response in two cases. Firstly, as a result of presentation of the optimal stimulus. Secondly, rebound excitation when removing the opposite stimulus. Also, there are studies suggesting that rebound excitation meets conditions to participate in visual perception at the same sensitivity and reaction speed as a response to the optimal stimulus. Thus, white noise stimulation creates possibility to catch the form of a smooth transition from one type of response to another. Using freely available data, a spike-triggered behavior map was built that does not show the area of silence between those two types of spike triggers. Moreover, linear filter with biphasic temporal properties which work as the derivative kernel demonstrate that both responses are two sides of the same coin. Thus, it is suggested to determine the optimal stimulus for magnocellular-projecting retinal ganglion cells as brightness change according to concentric center–surround receptive field structure.


1999 ◽  
Vol 39 (15) ◽  
pp. 2477-2484 ◽  
Author(s):  
Elke Guenther ◽  
Susanne Schmid ◽  
Dierk Reiff ◽  
Eberhard Zrenner

Sign in / Sign up

Export Citation Format

Share Document