membrane fluctuations
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ambika Somasundar ◽  
Niladri Sekhar Mandal ◽  
Ayusman Sen

The dynamic interplay between the composition of lipid membranes and the behavior of membrane-bound enzymes is critical to the understanding of cellular function and viability, and the design of membrane-based biosensing platforms. While there is a significant body of knowledge on how lipid composition and dynamics affect membrane-bound enzymes, little is known about how enzyme catalysis influences the motility and lateral transport in lipid membranes. Using enzymes-attached lipids in supported bilayers (SLB), we show catalysis-induced enhanced lateral diffusion of lipids in the bilayer. Enhancing the membrane viscosity by increasing the cholesterol content in the bilayer suppresses the overall diffusion but not the relative diffusion enhancement of the enzyme-attached lipids. We also provide direct evidence of catalysis-induced membrane fluctuations leading to the enhanced diffusion of passive tracers resting on the SLB. Additionally, by using active enzyme patches, we demonstrate the directional transport of tracers on SLBs. These are first steps in understanding diffusion and transport in lipid membranes due to active, out-of-equilibrium processes that are the hallmark of living systems. In general, our study demonstrates how active enzymes can be used to control diffusion and transport in confined 2-D environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Minji Sohn ◽  
Ji Eun Lee ◽  
MinGeun Ahn ◽  
YongKeun Park ◽  
Soo Lim

AbstractThe rheological and physiological properties of red blood cells (RBCs) are affected by many factors in the vascular environment. Among them, membrane fluctuations (MFs), particularly dynamic fluctuations in RBC cell membrane thickness (RBC-MFs), are likely to be altered by the level of glycation of haemoglobin in patients with diabetes mellitus (DM). We investigated the associations of RBC-MFs with physiological variables associated with DM and cardiovascular diseases (CVDs). Forty-one healthy control subjects and 59 patients with DM were enrolled. Five-microliter samples of blood were collected and diluted 400 times. To measure the RBC-MFs, holotomography was used, which non-invasively and precisely analyses the optical characteristics of RBCs. Associations between the RBC-MFs and biochemical parameters related to glucose homeostasis and lipid profiles were investigated. Independent associations of the RBC-MFs with the presence of CVDs were also analysed. RBC-MFs were lower in patients with DM than in healthy participants (61.64 ± 7.49 nm vs 70.65 ± 6.65 nm, P = 1.4 × 10−8). RBC-MFs correlated modestly with glycated haemoglobin level (ρ = − 0.47) and weakly with age (ρ = − 0.36), duration of diabetes (ρ = − 0.36), fasting plasma glucose level (ρ = − 0.37), and the 10-year Framingham risk score (ρ = − 0.38) (all P < 0.05). Low RBC-MFs were independently associated with the presence of CVDs after adjusting for CVD risk factors. The weak but significant associations of RBC-MFs with cardiometabolic risk factors and CVDs suggest that such deformity of circulating RBCs may be a useful marker of vascular complications of DM.


2021 ◽  
Vol 12 ◽  
pp. 242-256
Author(s):  
Christian Voelkner ◽  
Mirco Wendt ◽  
Regina Lange ◽  
Max Ulbrich ◽  
Martina Gruening ◽  
...  

The functionality of living cells is inherently linked to subunits with dimensions ranging from several micrometers down to the nanometer scale. The cell surface plays a particularly important role. Electric signaling, including information processing, takes place at the membrane, as well as adhesion and contact. For osteoblasts, adhesion and spreading are crucial processes with regard to bone implants. Here we present a comprehensive characterization of the 3D nanomorphology of living, as well as fixed, osteoblastic cells using scanning ion conductance microscopy (SICM), which is a nanoprobing method that largely avoids mechanical perturbations. Dynamic ruffles are observed, manifesting themselves in characteristic membrane protrusions. They contribute to the overall surface corrugation, which we systematically study by introducing the relative 3D excess area as a function of the projected adhesion area. A clear anticorrelation between the two parameters is found upon analysis of ca. 40 different cells on glass and on amine-covered surfaces. At the rim of lamellipodia, characteristic edge heights between 100 and 300 nm are observed. Power spectral densities of membrane fluctuations show frequency-dependent decay exponents with absolute values greater than 2 on living osteoblasts. We discuss the capability of apical membrane features and fluctuation dynamics in aiding the assessment of adhesion and migration properties on a single-cell basis.


2021 ◽  
Vol 18 (176) ◽  
Author(s):  
Sedigheh Ghanbarzadeh Nodehi ◽  
G. V. Shivashankar ◽  
Jacques Prost ◽  
Farshid Mohammad-Rafiee

We analyse the stem cell nucleus shape fluctuation spectrum obtained from optical confocal microscopy on an hour time scale with 10 s resolution. In particular, we investigate the angular and time dependencies of these fluctuations, define appropriate correlation functions that reveal the fundamentally out of equilibrium nature of the observed fluctuations as well as their global anisotropy. Langevin equations respecting the symmetry of the system allow us to model the damped oscillatory behaviour of the time correlations.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2683-2695
Author(s):  
Nasko Terziev ◽  
Geoffrey Daniel ◽  
Grigori Torgovnikov

The low permeability of many wood species causes significant problems during processing. Industrial methods used for increasing wood permeability reduce strength properties, are energy consuming, and are not viable economically. Destruction of pit membranes in wood cell walls can provide an increase in wood permeability without affecting wood strength properties. It can be accomplished using resonance applied to the pit membranes. Theoretical analysis and calculations have been performed to determine pit membrane (torus and margo) natural frequency. Membrane natural frequencies of bordered pits of Norway spruce are in the range of 3 to 11 MHz. Water in the pit chamber did not have a significant effect on the resonant frequency of the membrane. The main limitation of the amplitude of membrane fluctuations inside the pit chamber was the width of the chamber. Two methods to initiate resonance frequency for pit membrane destruction have been suggested, namely, alternating electric field application and microwave energy pulsation.


2020 ◽  
Author(s):  
Baishali Mukherjee ◽  
Madhura Chakraborty ◽  
Arikta Biswas ◽  
Rajesh Kumble Nayak ◽  
Bidisha Sinha

AbstractSingle cell studies demonstrate membrane tension to be a central regulator of lamellipodia-driven motility bringing in front-coherence. During collective cell migration, however, tension mapping or existence of intracellular tension-gradients and the effect of cell-cell interactions have remained unexplored. In this study of membrane fluctuations and fluctuation-tension of migrating primary keratocyte cell-sheets, we first show that some leader cells are followed by followers which remain de-adhered from the substrate while being attached to other cells and thus appear to be “taking a ride”. A subtle yet significant enhanced long-timescale velocity in these leaders indicate increased directionality. Intriguingly, such leaders mostly have front-high tension gradients like single keratocytes, while followers and other leaders usually display front-low membrane tension gradients. The front-high tension gradient and higher membrane tension observed in these leaders, despite the high cell-to-cell variability in membrane tension demonstrate how leader-follower interactions and heterogenous adhesion profiles are key in collective cell migration.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hui Jai Lee ◽  
SangYun Lee ◽  
HyunJoo Park ◽  
YongKeun Park ◽  
Jonghwan Shin

Changes in microcirculation are believed to perform an important role after cardiac arrest. In particular, rheological changes in red blood cells (RBCs) have been observed during and after ischemic-reperfusion injury. Employing three-dimensional laser interferometric microscopy, we investigated three-dimensional shapes and deformability of RBCs during and after asphyxial cardiac arrest in rats at the individual cell level. Rat cardiac arrest was induced by asphyxia. Five rats were maintained for 7 min of no-flow time, and then, cardiopulmonary resuscitation (CPR) was started. Blood samples were obtained before cardiac arrest, during CPR, and 60 min after return of spontaneous circulation (ROSC). Quantitative phase imaging (QPI) techniques based on laser interferometry were used to measure the three-dimensional refractive index (RI) tomograms of the RBC, from which structural and biochemical properties were retrieved. Dynamic membrane fluctuations in the cell membrane were also quantitatively and sensitively measured in order to investigate cell deformability. Mean corpuscular hemoglobin, mean cell volume, mean corpuscular hemoglobin concentration, and red blood cell distribution width remained unchanged during CPR and after ROSC compared with those before cardiac arrest. QPI results revealed that RBC membrane fluctuations, sphericity, and surface area did not change significantly during CPR or after ROSC compared with initial values. In conclusion, no three-dimensional shapes and cell deformability changes in RBCs were detected.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Keyvan Jaferzadeh ◽  
MinWoo Sim ◽  
NamGon Kim ◽  
InKyu Moon

Abstract The optimal functionality of red blood cells is closely associated with the surrounding environment. This study was undertaken to analyze the changes in membrane profile, mean corpuscular hemoglobin (MCH), and cell membrane fluctuations (CMF) of healthy red blood cells (RBC) at varying temperatures. The temperature was elevated from 17 °C to 41 °C within a duration of less than one hour, and the holograms were recorded by an off-axis configuration. After hologram reconstruction, we extracted single RBCs and evaluated their morphologically related features (projected surface area and sphericity coefficient), MCH, and CMF. We observed that elevating the temperature results in changes in the three-dimensional (3D) profile. Since CMF amplitude is highly correlated to the bending curvature of RBC membrane, temperature-induced shape changes can alter CMF’s map and amplitude; mainly larger fluctuations appear on dimple area at a higher temperature. Regardless of the shape changes, no alterations in MCH were seen with temperature variation.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Madineh Sedigh-Sarvestani ◽  
Larry A Palmer ◽  
Diego Contreras

The thalamocortical synapse of the visual system has been central to our understanding of sensory computations in the cortex. Although we have a fair understanding of the functional properties of the pre and post-synaptic populations, little is known about their synaptic properties, particularly in vivo. We used simultaneous recordings in LGN and V1 in cat in vivo to characterize the dynamic properties of thalamocortical synaptic transmission in monosynaptically connected LGN-V1 neurons. We found that thalamocortical synapses in vivo are unreliable, highly variable and exhibit short-term plasticity. Using biologically constrained models, we found that variable and unreliable synapses serve to increase cortical firing by means of increasing membrane fluctuations, similar to high conductance states. Thus, synaptic variability and unreliability, rather than acting as system noise, do serve a computational function. Our characterization of LGN-V1 synaptic properties constrains existing mathematical models, and mechanistic hypotheses, of a fundamental circuit in computational neuroscience.


Sign in / Sign up

Export Citation Format

Share Document