scholarly journals Estimating properties of the fast and slow adaptive processes during sensorimotor adaptation

2018 ◽  
Vol 119 (4) ◽  
pp. 1367-1393 ◽  
Author(s):  
Scott T. Albert ◽  
Reza Shadmehr

Experience of a prediction error recruits multiple motor learning processes, some that learn strongly from error but have weak retention and some that learn weakly from error but exhibit strong retention. These processes are not generally observable but are inferred from their collective influence on behavior. Is there a robust way to uncover the hidden processes? A standard approach is to consider a state space model where the hidden states change following experience of error and then fit the model to the measured data by minimizing the squared error between measurement and model prediction. We found that this least-squares algorithm (LMSE) often yielded unrealistic predictions about the hidden states, possibly because of its neglect of the stochastic nature of error-based learning. We found that behavioral data during adaptation was better explained by a system in which both error-based learning and movement production were stochastic processes. To uncover the hidden states of learning, we developed a generalized expectation maximization (EM) algorithm. In simulation, we found that although LMSE tracked the measured data marginally better than EM, EM was far more accurate in unmasking the time courses and properties of the hidden states of learning. In a power analysis designed to measure the effect of an intervention on sensorimotor learning, EM significantly reduced the number of subjects that were required for effective hypothesis testing. In summary, we developed a new approach for analysis of data in sensorimotor experiments. The new algorithm improved the ability to uncover the multiple processes that contribute to learning from error. NEW & NOTEWORTHY Motor learning is supported by multiple adaptive processes, each with distinct error sensitivity and forgetting rates. We developed a generalized expectation maximization algorithm that uncovers these hidden processes in the context of modern sensorimotor learning experiments that include error-clamp trials and set breaks. The resulting toolbox may improve the ability to identify the properties of these hidden processes and reduce the number of subjects needed to test the effectiveness of interventions on sensorimotor learning.

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986221
Author(s):  
Hongqiang Liu ◽  
Haiyan Yang ◽  
Tao Zhang ◽  
Bo Pan

A Gauss process state-space model trained in a laboratory cannot accurately simulate a nonlinear system in a non-laboratory environment. To solve this problem, a novel Gauss process state-space model optimization algorithm is proposed by combining the expectation–maximization algorithm with the Gauss process Rauch–Tung–Striebel smoother algorithm, that is, the EM-GP-RTSS algorithm. First, a theoretical formulation of the Gauss process state-space model is proposed, which is not found in previous references. Second, a Gauss process state-space model optimization framework with the expectation–maximization algorithm is proposed. In the expectation–maximization algorithm, the unknown system state is considered as the lost data, and the maximization of measurement likelihood function is transformed into that of a conditional expectation function. Then, the Gauss process–assumed density filter algorithm and the Gauss process Rauch–Tung–Striebel smoother algorithm are proposed with the Gauss process state-space model defined in this article, in order to calculate the smoothed distribution in the conditional expectation function. Finally, the Monte Carlo numerical integral method is used to obtain the approximate expression of the conditional expectation function. The simulation results demonstrate that the Gauss process state-space model optimized by the EM-GP-RTSS can simulate the system in the non-laboratory environment better than the Gauss process state-space model trained in the laboratory, and can reach or exceed the estimation accuracy of the traditional state-space model.


2021 ◽  
Author(s):  
Mousa Javidialsaadi ◽  
Scott T. Albert ◽  
Jinsung Wang

AbstractWhen the same perturbation is experienced consecutively, learning is accelerated on the second attempt. This savings is a central property of sensorimotor adaptation. Current models suggest that these improvements in learning are due to changes in the brain’s sensitivity to error. Here, we tested whether these increases in error sensitivity could be facilitated by passive movement experiences. In each experimental group, the robot moved the arm passively in the direction that solved the upcoming rotation, but no visual feedback was provided. Then, following a break in time, participants adapted to a visuomotor rotation. Prior passive movements substantially improved motor learning, increasing total compensation in each group by approximately 30%. Similar to savings, a state-space model suggested that this improvement in learning was due to an increase in error sensitivity, but not memory retention. Thus, passive memories appeared to increase the motor learning system’s sensitivity to error. However, some features in the observed behavior were not captured by this model, nor by similar empirical models, which assumed that learning was due a single exponential process. When we considered the possibility that learning was supported by parallel fast and slow adaptive processes, a striking pattern emerged; whereas initial improvements in learning were driven by a slower adaptive state, increases in error sensitivity gradually transferred to a faster learning system with the passage of time.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhirong Tang ◽  
Huaqiang Li ◽  
Fangwei Xu ◽  
Qin Shu ◽  
Yue Jiang

In this paper, a new method without any tradition assumption to estimate the utility harmonic impedance of a point of common coupling (PCC) is proposed. But, the existing estimation methods usually are built on some assumptions, such as, the background harmonic is stable and small, the harmonic impedance of the customer side is much larger than that of utility side, and the harmonic sources of both sides are independent. However these assumptions are unpractical to modern power grid, which causes very wrong estimation. The proposed method first uses a Cauchy Mixed Model (CMM) to express the Norton equivalent circuit of the PCC because we find that the CMM can right fit the statistical distribution of the measured harmonic data for any PCC, by testing and verifying massive measured harmonic data. Also, the parameters of the CMM are determined by the expectation maximization algorithm (EM), and then the utility harmonic impedance is estimated by means of the CMM’s parameters. Compared to the existing methods, the main advantages of our method are as follows: it can obtain the accurate estimation results, but it is no longer dependent of any assumption and is only related to the measured data distribution. Finally, the effectiveness of the proposed method is verified by simulation and field cases.


Sign in / Sign up

Export Citation Format

Share Document