scholarly journals Soleus single motor units show stronger coherence with Achilles tendon vibration across a broad bandwidth relative to medial gastrocnemius units while standing

2019 ◽  
Vol 122 (5) ◽  
pp. 2119-2129 ◽  
Author(s):  
Robyn L. Mildren ◽  
Ryan M. Peters ◽  
Mark G. Carpenter ◽  
Jean-Sébastien Blouin ◽  
J. Timothy Inglis

To probe the frequency characteristics of somatosensory responses in the triceps surae muscles, we previously applied suprathreshold noisy vibration to the Achilles tendon and correlated it with ongoing triceps surae muscle activity (recorded via surface EMG) during standing. Stronger responses to tendon stimuli were observed in soleus (Sol) relative to medial gastrocnemius (MGas) surface EMG; however, it is unknown whether differences in motor unit activity or limitations of surface EMG could have influenced this finding. Here, we inserted indwelling EMG into Sol and MGas to record the activity of single motor units while we applied noisy vibration (10–115 Hz) to the right Achilles tendon of standing participants. We analyzed the relationship between vibration acceleration and the spike activity of active single motor units through estimates of coherence, gain, phase, and cross-covariance. We also applied sinusoidal vibration at frequencies from 10 to 100 Hz (in 5-Hz increments) to examine whether motor units demonstrate nonlinear synchronization or phase locking at higher frequencies. Relative to MGas single motor units, Sol units demonstrated stronger coherence and higher gain with noisy vibration across a bandwidth of 7–68 Hz, and larger peak-to-peak cross-covariance at all four stimulus amplitudes examined. Sol and MGas motor unit activity was modulated over the time course of the sinusoidal stimuli across all frequencies, but their phase-locking behavior was minimal. These findings suggest Sol plays a prominent role in responding to disturbances transmitted through the Achilles tendon across a broad frequency band during standing. NEW & NOTEWORTHY We examined the relationship between Achilles tendon stimuli and spike times of single soleus (Sol) and medial gastrocnemius (MGas) motor units during standing. Relative to MGas, Sol units demonstrated stronger coherence and higher gain with noisy stimuli across a bandwidth of 7–68 Hz. Sol and MGas units demonstrated minimal nonlinear phase locking with sinusoidal stimuli. These findings indicate Sol plays a prominent role in responding to tendon stimuli across a broad frequency band.

2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


1992 ◽  
Vol 67 (5) ◽  
pp. 1375-1384 ◽  
Author(s):  
A. M. Aniss ◽  
S. C. Gandevia ◽  
D. Burke

1. Reflex responses were elicited in muscles that act at the ankle by electrical stimulation of low-threshold afferents from the foot in human subjects who were reclining supine. During steady voluntary contractions, stimulus trains (5 pulses at 300 Hz) were delivered at two intensities to the sural nerve (1.2-4.0 times sensory threshold) or to the posterior tibial nerve (1.1-3.0 times motor threshold for the intrinsic muscles of the foot). Electromyographic (EMG) recordings were made from tibialis anterior (TA), peroneus longus (PL), soleus (SOL), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles by the use of intramuscular wire electrodes. 2. As assessed by averages of rectified EMG, stimulation of the sural or posterior tibial nerves at nonpainful levels evoked a complex oscillation with onset latencies as early as 40 ms and lasting up to 200 ms in each muscle. The most common initial responses in TA were a decrease in EMG activity at an onset latency of 54 ms for sural stimuli, and an increase at an onset latency of 49 ms for posterior tibial stimuli. The response of PL to stimulation of the two nerves began with a strong facilitation of 44 ms (sural) and 49 ms (posterior tibial). With SOL, stimulation of both nerves produced early inhibition beginning at 45 and 50 ms, respectively. With both LG and MG, sural stimuli produced an early facilitation at 52-53 ms. However, posterior tibial stimuli produced different initial responses in these two muscles: facilitation in LG at 50 ms and inhibition in MG at 51 ms. 3. Perstimulus time histograms of the discharge of 61 single motor units revealed generally similar reflex responses as in multiunit EMG. However, different reflex components were not equally apparent in the responses of different single motor units: an individual motor unit could respond slightly differently with a change in stimulus intensity or background contraction level. The multiunit EMG record represents a global average that does not necessarily depict the precise pattern of all motor units contributing to the average. 4. When subjects stood erect without support and with eyes closed, reflex patterns were seen only in active muscles, and the patterns were similar to those in the reclining posture. 5. It is concluded that afferents from mechanoreceptors in the sole of the foot have multisynaptic reflex connections with the motoneuron pools innervating the muscles that act at the ankle. When the muscles are active in standing or walking, cutaneous feedback may play a role in modulating motoneuron output and thereby contribute to stabilization of stance and gait.


1975 ◽  
Vol 38 (5) ◽  
pp. 1217-1231 ◽  
Author(s):  
J. A. Stephens ◽  
R. M. Reinking ◽  
D. G. Stuart

The responses of 13 Golgi tendon organs to graded force development of 29 motor units in medial gastrocnemius of the cat have been studied in five experiments. Of the 13 tendon organs, 11 were responsive to passive stretch within the physiological range of muscle length and 5 were "spontaneously" active at very short lengths where no passive tension could be recorded. The relationship between passive force and the firing rates of the various afferents ranged from a linear one to a power relation (Y = Axb + c) with b, a widely varying exponent. Results support the general conclusion that although many Ib afferents respond to passive force within the physiological range of muscle stretch, this form of stimulus is not a particularly effective one. The statis responses of Golgi tendon organs to active force development produced by single motor units was studied at different muscle lengths. In all cases the apparent sensitivity (change in firing rate per active force developed) decreased as muscle length approached Lo. The static responses of Golgi tendon organs to force developed by single motor units were also studied during fatiguing contractions. The data suggest a sigmoid relationship between force developed at the tendon and the Ib response. The collective response of all 13 tendon organs to active and passive forces at different muscle lengths was also examined. This analysis offered further support for the viewpoint that active motor unit contractions provide themost significant excitatory input to tendon organs and that changes in passive force during muscle stretch have comparatively little effect on the collective tendon organ response. The interaction between active and passive force inputs to the Golgi tendon organs is discussed in relation to the complicated nature of the relationship between forces measured at the tendon and those acting within the receptor capsule. When these complications were taken into account it was possible to explain the differences in responsiveness of a given tendon organ to active contraction of several motor units and to passive force in terms of a single force-firing rate curve for the receptor. It is concluded that changes in the force of contraction of single motor units result in relatively small changes in Ib afferent firing and that during normal muscle contractions, changes in the number of motor units acting on a single receptor must produce far more significant changes in firing rate than changes in the amount of force developed by any single unit. Changes in dynamic Ib sensitivity to single motor unit contractions are also shown to depend on length and in a similar way to the changes in static Ib sensitivity. During fatiguing contractions, a sigmoid relation was found between the dynamic Ib response and the rate of force development by single motor units.


2018 ◽  
Vol 129 (8) ◽  
pp. 1634-1641 ◽  
Author(s):  
Boudewijn T.H.M. Sleutjes ◽  
Judith Drenthen ◽  
Ernest Boskovic ◽  
Leonard J. van Schelven ◽  
Maria O. Kovalchuk ◽  
...  

1990 ◽  
Vol 68 (1) ◽  
pp. 26-34 ◽  
Author(s):  
M. A. Nordstrom ◽  
T. S. Miles

The spike-triggered averaging technique was used to determine the time course and extent of fatigue of single motor unit twitches in the human masseter. This is the first report of a fatigue test having been applied to masseter motor units in either animals or humans. The human masseter was found to be comprised predominantly of fast-twitch motor units with a broad spectrum of fatigability. Very few physiological type S units were found, despite histochemical evidence for a substantial population of type I fibers in the masseter. In addition, there was no significant correlation between fatigability and either twitch amplitude or contractile speed in the motor units studied. The latter observations are consistent with the unusual histological features of the masseter. Comparison with other human fatigue data suggests that the extent of fatigue in the present population of masseter motor units after approximately 3,000 activations is similar to that reported for populations of units in first dorsal interosseous and medial gastrocnemius.


1988 ◽  
Vol 59 (3) ◽  
pp. 908-921 ◽  
Author(s):  
A. M. Aniss ◽  
S. C. Gandevia ◽  
D. Burke

1. This study was undertaken to determine whether low-threshold cutaneous and muscle afferents from mechanoreceptors in the foot reflexly affect fusimotor neurons innervating the plantar and dorsiflexors of the ankle during voluntary contractions. 2. Recordings were made from 29 identified muscle spindle afferents innervating triceps surae and the pretibial flexors. Trains of electrical stimuli (5 stimuli, 300 impulses per second) were delivered to the sural nerve at the ankle (intensity: 2-4 times sensory threshold) and to the posterior tibial nerve at the ankle (intensity: 1.5-3 times motor threshold for the small muscles of the foot). The stimuli were delivered while the subject maintained an isometric voluntary contraction of the receptor-bearing muscle, sufficient to accelerate the discharge of each spindle ending. This ensured that the fusimotor neurons directed to the ending were active and influencing the spindle discharge. The effects of these stimuli on muscle spindle discharge were assessed using raster displays, frequencygrams, poststimulus time histograms (PSTHs) and cumulative sums ("CUSUMs") of the PSTHs. Reflex effects onto alpha-motoneurons were determined from poststimulus changes in the averaged rectified electromyogram (EMG). Reflex effects of these stimuli onto single-motor units were assessed in separate experiments using PSTHs and CUSUMs. 3. Electrical stimulation of the sural or posterior tibial nerves at nonnoxious levels had no significant effect on the discharge of the 14 spindle endings in the pretibial flexor muscles. The electrical stimuli also produced no significant change in discharge of 11 of 15 spindle endings in triceps surae. With the remaining four endings in triceps surae, the overall change in discharge appeared to be an increase for two endings (at latencies of 60 and 68 ms) and a decrease for two endings (at latencies of 110 and 150 ms). The difference in the incidence of the responses of spindle endings in tibialis anterior and in triceps surae was significant (P less than 0.05, chi 2 test). 4. For both triceps surae and pretibial flexor muscles the electrical stimuli to sural or posterior tibial nerves had clear effects on the alpha-motoneuron pool, whether assessed using surface EMG or the discharge of single-motor units. Based on EMG recordings using intramuscular wire electrodes, the reflex effects differed for the gastrocnemii and soleus. 5. In this study, reflex changes in the discharge of human spindle endings were more difficult to demonstrate than comparable changes in the discharge of alpha-motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document