tendon organs
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 4)

H-INDEX

35
(FIVE YEARS 0)

Author(s):  
Huub Maas ◽  
Wendy Noort ◽  
Hiltsje A. Smilde ◽  
Jacob A. Vincent ◽  
Paul Nardelli ◽  
...  

AbstractSkeletal muscles embed multiple tendon organs, both at the proximal and distal ends of muscle fibers. One of the functions of such spatial distribution may be to provide locally unique force feedback, which may become more important when stresses are distributed non-uniformly within the muscle. Forces exerted by connections between adjacent muscles (i.e. epimuscular myofascial forces) may cause such local differences in force. The aim of this exploratory study was to investigate the effects of mechanical interactions between adjacent muscles on sensory encoding by tendon organs. Action potentials from single afferents were recorded intra-axonally in response to ramp-hold release (RHR) stretches of a passive agonistic muscle at different lengths or relative positions of its passive synergist. The tendons of gastrocnemius (GAS), plantaris (PL) and soleus (SO) muscles were cut from the skeleton for attachment to servomotors. Connective tissues among these muscles were kept intact. Lengthening GAS + PL decreased the force threshold of SO tendon organs (p = 0.035). The force threshold of lateral gastrocnemius (LG) tendon organs was not affected by SO length (p = 0.371). Also displacing LG + PL, kept at a constant muscle–tendon unit length, from a proximal to a more distal position resulted in a decrease in force threshold of LG tendon organs (p = 0.007). These results indicate that tendon organ firing is affected by changes in length and/or relative position of adjacent synergistic muscles. We conclude that tendon organs can provide the central nervous system with information about local stresses caused by epimuscular myofascial forces.


2021 ◽  
Author(s):  
José A. Vega ◽  
Juan Cobo

The proprioception is the sense of positioning and movement. It is mediate by proprioceptors, a small subset of mechanosensory neurons localized in the dorsal root ganglia that convey information about the stretch and tension of muscles, tendons, and joints. These neurons supply of afferent innervation to specialized sensory organs in muscles (muscle spindles) and tendons (Golgi tendon organs). Thereafter, the information originated in the proprioceptors travels throughout two main nerve pathways reaching the central nervous system at the level of the spinal cord and the cerebellum (unconscious) and the cerebral cortex (conscious) for processing. On the other hand, since the stimuli for proprioceptors are mechanical (stretch, tension) proprioception can be regarded as a modality of mechanosensitivity and the putative mechanotransducers proprioceptors begins to be known now. The mechanogated ion channels acid-sensing ion channel 2 (ASIC2), transient receptor potential vanilloid 4 (TRPV4) and PIEZO2 are among candidates. Impairment or poor proprioception is proper of aging and some neurological diseases. Future research should focus on treating these defects. This chapter intends provide a comprehensive update an overview of the anatomical, structural and molecular basis of proprioception as well as of the main causes of proprioception impairment, including aging, and possible treatments.


Author(s):  
Peter Kam ◽  
Ian Power ◽  
Michael J. Cousins ◽  
Philip J. Siddal

2018 ◽  
Vol 373 (1759) ◽  
pp. 20170327 ◽  
Author(s):  
Ronen Blecher ◽  
Lia Heinemann-Yerushalmi ◽  
Eran Assaraf ◽  
Nitzan Konstantin ◽  
Jens R. Chapman ◽  
...  

Muscle spindles and Golgi tendon organs (GTOs) are two types of sensory receptors that respond to changes in length or tension of skeletal muscles. These mechanosensors have long been known to participate in both proprioception and stretch reflex. Here, we present recent findings implicating these organs in maintenance of spine alignment as well as in realignment of fractured bones. These discoveries have been made in several mouse lines lacking functional mechanosensors in part or completely. In both studies, the absence of functional spindles and GTOs produced a more severe phenotype than that of spindles alone. Interestingly, the spinal curve phenotype, which appeared during peripubertal development, bears resemblance to the human condition adolescent idiopathic scoliosis. This similarity may contribute to the study of the disease by offering both an animal model and a clue as to its aetiology. Moreover, it raises the possibility that impaired proprioceptive signalling may be involved in the aetiology of other conditions. Overall, these new findings expand considerably the scope of involvement of proprioception in musculoskeletal development and function.This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.


Author(s):  
Mark Harrison

This chapter describes the pathophysiology of the respiratory system as it applies to Emergency Medicine, and in particular the Primary FRCEM examination. The chapter outlines the key details of the control of ventilation, reflexes, pressure, chemical, and irritant receptors, J receptors, pulmonary stretch receptors, Golgi tendon organs, muscle spindles, lung volumes, pulmonary mechanics, oxygen and carbon dioxide transport, DO2/VO2 relationships, carbon monoxide, pulse oximetry, effects of altitude, and dysbarism. This chapter is laid out exactly following the RCEM syllabus, to allow easy reference and consolidation of learning.


Author(s):  
David Chambers ◽  
Christopher Huang ◽  
Gareth Matthews

2013 ◽  
Vol 109 (4) ◽  
pp. 1126-1139 ◽  
Author(s):  
Dinant A. Kistemaker ◽  
Arthur J. Knoek Van Soest ◽  
Jeremy D. Wong ◽  
Isaac Kurtzer ◽  
Paul L. Gribble

Whereas muscle spindles play a prominent role in current theories of human motor control, Golgi tendon organs (GTO) and their associated tendons are often neglected. This is surprising since there is ample evidence that both tendons and GTOs contribute importantly to neuromusculoskeletal dynamics. Using detailed musculoskeletal models, we provide evidence that simple feedback using muscle spindles alone results in very poor control of joint position and movement since muscle spindles cannot sense changes in tendon length that occur with changes in muscle force. We propose that a combination of spindle and GTO afferents can provide an estimate of muscle-tendon complex length, which can be effectively used for low-level feedback during both postural and movement tasks. The feasibility of the proposed scheme was tested using detailed musculoskeletal models of the human arm. Responses to transient and static perturbations were simulated using a 1-degree-of-freedom (DOF) model of the arm and showed that the combined feedback enabled the system to respond faster, reach steady state faster, and achieve smaller static position errors. Finally, we incorporated the proposed scheme in an optimally controlled 2-DOF model of the arm for fast point-to-point shoulder and elbow movements. Simulations showed that the proposed feedback could be easily incorporated in the optimal control framework without complicating the computation of the optimal control solution, yet greatly enhancing the system's response to perturbations. The theoretical analyses in this study might furthermore provide insight about the strong physiological couplings found between muscle spindle and GTO afferents in the human nervous system.


2012 ◽  
Vol 92 (4) ◽  
pp. 1651-1697 ◽  
Author(s):  
Uwe Proske ◽  
Simon C. Gandevia

This is a review of the proprioceptive senses generated as a result of our own actions. They include the senses of position and movement of our limbs and trunk, the sense of effort, the sense of force, and the sense of heaviness. Receptors involved in proprioception are located in skin, muscles, and joints. Information about limb position and movement is not generated by individual receptors, but by populations of afferents. Afferent signals generated during a movement are processed to code for endpoint position of a limb. The afferent input is referred to a central body map to determine the location of the limbs in space. Experimental phantom limbs, produced by blocking peripheral nerves, have shown that motor areas in the brain are able to generate conscious sensations of limb displacement and movement in the absence of any sensory input. In the normal limb tendon organs and possibly also muscle spindles contribute to the senses of force and heaviness. Exercise can disturb proprioception, and this has implications for musculoskeletal injuries. Proprioceptive senses, particularly of limb position and movement, deteriorate with age and are associated with an increased risk of falls in the elderly. The more recent information available on proprioception has given a better understanding of the mechanisms underlying these senses as well as providing new insight into a range of clinical conditions.


Sign in / Sign up

Export Citation Format

Share Document