Inferior Colliculus Responses to Multichannel Microstimulation of the Ventral Cochlear Nucleus: Implications for Auditory Brain Stem Implants

2008 ◽  
Vol 99 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Mohit N. Shivdasani ◽  
Stefan J. Mauger ◽  
Graeme D. Rathbone ◽  
Antonio G. Paolini

Multichannel techniques were used to assess the frequency specificity of activation in the central nucleus of the inferior colliculus (CIC) produced by electrical stimulation of localized regions within the ventral cochlear nucleus (VCN). Data were recorded in response to pure tones from 141 and 193 multiunit clusters in the rat VCN and the CIC, respectively. Of 141 VCN sites, 126 were individually stimulated while recording responses in the CIC. A variety of CIC response types were seen with an increase in both electrical and acoustic stimulation levels. The majority of sites exhibited monotonic rate-level types acoustically, whereas spike rate saturation was achieved predominantly with electrical stimulation. In 20.6% of the 364 characteristic frequency aligned VCN–CIC pairs, the CIC sites did not respond to stimulation. In 26% of the 193 CIC sites, a high correlation was observed between acoustic tuning and electrical tuning obtained through VCN stimulation. A high degree of frequency specificity was found in 58% of the 118 lowest threshold VCN–CIC pairs. This was dependent on electrode placement within the VCN because a higher degree of frequency specificity was achieved with stimulation of medial, central, and posterolateral VCN regions than more anterolateral regions. Broadness of acoustic tuning in the CIC played a role in frequency-specific activation. Narrowly tuned CIC sites showed the lowest degree of frequency specificity on stimulation of the anterolateral VCN regions. These data provide significant implications for auditory brain stem implant electrode placement, current localization, power requirements, and facilitation of information transfer to higher brain centers.

Author(s):  
F. Portillo ◽  
R. A. Nelson ◽  
D. E. Brackmann ◽  
W. E. Hitselberger ◽  
R. V. Shannon ◽  
...  

Author(s):  
Laurie S. Eisenberg ◽  
Albert A. Maltan ◽  
Franco Portillo ◽  
Phil Mobley ◽  
William F. House

2012 ◽  
Vol 108 (11) ◽  
pp. 2999-3008 ◽  
Author(s):  
Stefan J. Mauger ◽  
Mohit N. Shivdasani ◽  
Graeme D. Rathbone ◽  
Antonio G. Paolini

The auditory brain stem implant (ABI) is being used clinically to restore hearing to patients unable to benefit from a cochlear implant (CI). Speech perception outcomes for ABI users are typically poor compared with most CI users. The ABI is implanted either on the surface of or penetrating through the cochlear nucleus in the auditory brain stem and uses stimulation strategies developed for auditory nerve stimulation with a CI. Although the stimulus rate may affect speech perception outcomes with current stimulation strategies, no studies have systematically investigated the effect of stimulus rate electrophysiologically or clinically. We therefore investigated rate response properties and temporal response properties of single inferior colliculus (IC) neurons from penetrating ABI stimulation using stimulus rates ranging from 100 to 1,600 pulses/s in the rat. We found that the stimulus rate affected the proportion of response types, thresholds, and dynamic ranges of IC activation. The stimulus rate was also found to affect the temporal properties of IC responses, with higher rates providing more temporally similar responses to acoustic stimulation. Suppression of neural firing and inhibition in IC neurons was also found, with response properties varying with the stimulus rate. This study demonstrated that changes in the ABI stimulus rate results in significant differences in IC neuron response properties. Due to electrophysiological differences, the stimulus rate may also change perceptual properties. We suggest that clinical evaluation of the ABI stimulus rate should be performed.


2011 ◽  
Vol 32 (3) ◽  
pp. 286-299 ◽  
Author(s):  
Martin OʼDriscoll ◽  
Wael El-Deredy ◽  
Richard T. Ramsden

1973 ◽  
Vol 38 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Ronald R. Tasker ◽  
L. W. Organ

✓ Auditory hallucinations were produced by electrical stimulation of the human upper brain stem during stereotaxic operations. The responses were confined to stimulation of the inferior colliculus, brachium of the inferior colliculus, medial geniculate body, and auditory radiations. Anatomical confirmation of an auditory site was obtained in one patient. The hallucination produced was a low-pitched nonspecific auditory “paresthesia” independent of the structure stimulated, the conditions of stimulation, or sonotopic factors. The effect was identical to that reported from stimulating the primary auditory cortex, and virtually all responses were contralateral. These observations have led to the following generalizations concerning electrical stimulation of the somesthetic, auditory, vestibular, and visual pathways within the human brain stem: the hallucination induced in each is the response to comparable conditions of stimulation, is nonspecific, independent of stimulation site, confined to the primary pathway concerned, chiefly contralateral, and identical to that induced by stimulating the corresponding primary auditory cortex. No sensory responses are found in the brain stem corresponding to those from the sensory association cortex.


1983 ◽  
Vol 59 (6) ◽  
pp. 1013-1018 ◽  
Author(s):  
Aage R. Møller ◽  
Peter J. Jannetta

✓ Intracranial responses from the auditory nerve and the cochlear nucleus were recorded from patients undergoing neurosurgical operations during which these structures were exposed. Responses to stimulation of the ipsilateral ear with short tonebursts from the vicinity of the cochlear nucleus show a large surface-negative peak, the latency of which is close to that of peak III in the auditory brain-stem evoked potentials recorded from scalp electrodes. There was also a response to contralateral stimulation, smaller in amplitude and with a longer latency. It is concluded that the cochlear nucleus is the main generator of peak III responses, and that structures of the ascending auditory pathway that are more central than the cochlear nucleus are unlikely to contribute to wave III of the auditory brain-stem evoked potentials.


Sign in / Sign up

Export Citation Format

Share Document