scholarly journals Retinohypothalamic Tract Synapses in the Rat Suprachiasmatic Nucleus Demonstrate Short-Term Synaptic Plasticity

2010 ◽  
Vol 103 (5) ◽  
pp. 2390-2399 ◽  
Author(s):  
Mykhaylo G. Moldavan ◽  
Charles N. Allen

The master circadian pacemaker located in the suprachiasmatic nucleus (SCN) is entrained by light intensity–dependent signals transmitted via the retinohypothalamic tract (RHT). Short-term plasticity at glutamatergic RHT–SCN synapses was studied using stimulus frequencies that simulated the firing of light sensitive retinal ganglion cells. The evoked excitatory postsynaptic current (eEPSC) was recorded from SCN neurons located in hypothalamic brain slices. The eEPSC amplitude was stable during 0.08 Hz stimulation and exhibited frequency-dependent short-term synaptic depression (SD) during 0.5 to 100 Hz stimulus trains in 95 of 99 (96%) recorded neurons. During SD the steady-state eEPSC amplitude decreased, whereas the cumulative charge transfer increased in a frequency-dependent manner and saturated at 20 Hz. SD was similar during subjective day and night and decreased with increasing temperature. Paired-pulse stimulation (PPS) and voltage-dependent Ca2+ channel (VDCC) blockers were used to characterize a presynaptic release mechanism. Facilitation was present in 30% and depression in 70% of studied neurons during PPS. Synaptic transmission was reduced by blocking both N- and P/Q-type presynaptic VDCCs, but only the N-type channel blocker significantly relieved SD. Aniracetam inhibited AMPA receptor desensitization but did not alter SD. Thus we concluded that SD is the principal form of short-term plasticity at RHT synapses, which presynaptically and frequency-dependently attenuates light-induced glutamatergic RHT synaptic transmission protecting SCN neurons against excessive excitation.

2017 ◽  
Vol 63 (4) ◽  
pp. 10-16
Author(s):  
О.P. Кolesnyk ◽  
◽  
S. А. Fedulova ◽  
N. S. Veselovsky ◽  
◽  
...  

2001 ◽  
Vol 85 (5) ◽  
pp. 2088-2099 ◽  
Author(s):  
John S. Fitzpatrick ◽  
Garnik Akopian ◽  
John P. Walsh

Two forms of short-term plasticity at inhibitory synapses were investigated in adult rat striatal brain slices using intracellular recordings. Intrastriatal stimulation in the presence of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (20 μM) andd,l-2-amino-5-phosphonovaleric acid (50 μM) produced an inhibitory postsynaptic potential (IPSP) that reversed polarity at −76 ± 1 (SE) mV and was sensitive to bicuculline (30 μM). The IPSP rectified at hyperpolarized membrane potentials due in part to activation of K+ channels. The IPSP exhibited two forms of short-term plasticity, paired-pulse depression (PPD) and synaptic augmentation. PPD lasted for several seconds and was greatest at interstimulus intervals (ISIs) of several hundred milliseconds, reducing the IPSP to 80 ± 2% of its control amplitude at an ISI of 200 ms. Augmentation of the IPSP, elicited by a conditioning train of 15 stimuli applied at 20 Hz, was 119 ± 1% of control when sampled 2 s after the conditioning train. Augmentation decayed with a time constant of 10 s. We tested if PPD and augmentation modify the ability of the IPSP to prevent the generation of action potentials. A train of action potentials triggered by a depolarizing current injection of constant amplitude could be interrupted by stimulation of an IPSP. If this IPSP was the second in a pair of IPSPs, it was less effective in blocking spikes due to PPD. By contrast, augmented IPSPs were more effective in blocking spikes. The same results were achieved when action potentials were triggered by a depolarizing current injection of varying amplitude, a manipulation that produces nearly identical spike times from trial to trial and approximates the in vivo behavior of these neurons. These results demonstrate that short-term plasticity of inhibition can modify the output of the striatum and thus may be an important component of information processing during behaviors that involve the striatum.


Neuron ◽  
2009 ◽  
Vol 62 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Bin Pan ◽  
Robert S. Zucker

2005 ◽  
Vol 102 (5) ◽  
pp. 920-928 ◽  
Author(s):  
Hiroaki Naruo ◽  
Shin Onizuka ◽  
David Prince ◽  
Mayumi Takasaki ◽  
Naweed I. Syed

Background As compared with their effects on both inhibitory and excitatory synapses, little is known about the mechanisms by which general anesthetics affect synaptic plasticity that forms the basis for learning and memory at the cellular level. To test whether clinically relevant concentrations of sevoflurane affect short-term potentiation involving cholinergic synaptic transmission, the soma-soma synapses between identified, postsynaptic neurons were used. Methods Uniquely identifiable neurons visceral dorsal 4 (presynaptic) and left pedal dorsal 1 (postsynaptic) of the mollusk Lymnaea stagnalis were isolated from the intact ganglion and paired overnight in a soma-soma configuration. Simultaneous intracellular recordings coupled with fluorescent imaging of the FM1-43 dye were made in either the absence or the presence of sevoflurane. Results Cholinergic synapses, similar to those observed in vivo, developed between the neurons, and the synaptic transmission exhibited classic short-term, posttetanic potentiation. Action potential-induced (visceral dorsal 4), 1:1 excitatory postsynaptic potentials were reversibly and significantly suppressed by sevoflurane in a concentration-dependent manner. Fluorescent imaging with the dye FM1-43 revealed that sevoflurane did not affect presynaptic exocytosis or endocytosis; instead, postsynaptic nicotinic acetylcholine receptors were blocked in a concentration-dependent manner. To test the hypothesis that sevoflurane affects short-term potentiation, a posttetanic potentiation paradigm was used, and synaptic transmission was examined in either the presence or the absence of sevoflurane. Although 1.5% sevoflurane significantly reduced synaptic transmission between the paired cells, it did not affect the formation or retention of posttetanic potentiation at this synapse. Conclusions This study demonstrates that sevoflurane blocks cholinergic synaptic transmission postsynaptically but does not affect short-term synaptic plasticity at the visceral dorsal 4-left pedal dorsal 1 synapse.


2008 ◽  
Vol 174 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Martin D. Haustein ◽  
Thomas Reinert ◽  
Annika Warnatsch ◽  
Bernhard Englitz ◽  
Beatrice Dietz ◽  
...  

2005 ◽  
Vol 37 (3) ◽  
pp. 261-272 ◽  
Author(s):  
M. V. Storozhuk ◽  
S. Yu. Ivanova ◽  
P. G. Kostyuk

2004 ◽  
Vol 1 (3) ◽  
pp. 245-252 ◽  
Author(s):  
ERIC A. NEWMAN

Bidirectional signaling between neurons and glial cells has been demonstrated in brain slices and is believed to mediate glial modulation of synaptic transmission in the CNS. Our laboratory has characterized similar neuron–glia signaling in the mammalian retina. We find that light-evoked neuronal activity elicits Ca2+ increases in Müller cells, which are specialized retinal glial cells. Neuron to glia signaling is likely mediated by the release of ATP from neurons and is potentiated by adenosine. Glia to neuron signaling has also been observed and is mediated by several mechanisms. Stimulation of glial cells can result in either facilitation or depression of synaptic transmission. Release of D-serine from Müller cells might also potentiate NMDA receptor transmission. Müller cells directly inhibit ganglion cells by releasing ATP, which, following hydrolysis to adenosine, activates neuronal A1 receptors. The existence of bidirectional signaling mechanisms indicates that glial cells participate in information processing in the retina.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fu-Wen Zhou ◽  
Adam C. Puche

Olfactory bulb and higher processing areas are synaptically interconnected, providing rapid regulation of olfactory bulb circuit dynamics and sensory processing. Short-term plasticity changes at any of these synapses could modulate sensory processing and potentially short-term sensory memory. A key olfactory bulb circuit for mediating cortical feedback modulation is granule cells, which are targeted by multiple cortical regions including both glutamatergic excitatory inputs and GABAergic inhibitory inputs. There is robust endocannabinoid modulation of excitatory inputs to granule cells and here we explored whether there was also endocannabinoid modulation of the inhibitory cortical inputs to granule cells. We expressed light-gated cation channel channelrhodopsin-2 (ChR2) in GABAergic neurons in the horizontal limb of the diagonal band of Broca (HDB) and their projections to granule cells in olfactory bulb. Selective optical activation of ChR2 positive axons/terminals generated strong, frequency-dependent short-term depression of GABAA-mediated-IPSC in granule cells. As cannabinoid type 1 (CB1) receptor is heavily expressed in olfactory bulb granule cell layer (GCL) and there is endogenous endocannabinoid release in GCL, we investigated whether activation of CB1 receptor modulated the HDB IPSC and short-term depression at the HDB→granule cell synapse. Activation of the CB1 receptor by the exogenous agonist Win 55,212-2 significantly decreased the peak amplitude of individual IPSC and decreased short-term depression, while blockade of the CB1 receptor by AM 251 slightly increased individual IPSCs and increased short-term depression. Thus, we conclude that there is tonic endocannabinoid activation of the GABAergic projections of the HDB to granule cells, similar to the modulation observed with glutamatergic projections to granule cells. Modulation of inhibitory synaptic currents and frequency-dependent short-term depression could regulate the precise balance of cortical feedback excitation and inhibition of granule cells leading to changes in granule cell mediated inhibition of olfactory bulb output to higher processing areas.


Sign in / Sign up

Export Citation Format

Share Document