Virtual Vocalization Stimuli for Investigating Neural Representations of Species-Specific Vocalizations

2006 ◽  
Vol 95 (2) ◽  
pp. 1244-1262 ◽  
Author(s):  
Christopher DiMattina ◽  
Xiaoqin Wang

Most studies investigating neural representations of species-specific vocalizations in non-human primates and other species have involved studying neural responses to vocalization tokens. One limitation of such approaches is the difficulty in determining which acoustical features of vocalizations evoke neural responses. Traditionally used filtering techniques are often inadequate in manipulating features of complex vocalizations. Furthermore, the use of vocalization tokens cannot fully account for intrinsic stochastic variations of vocalizations that are crucial in understanding the neural codes for categorizing and discriminating vocalizations differing along multiple feature dimensions. In this work, we have taken a rigorous and novel approach to the study of species-specific vocalization processing by creating parametric “virtual vocalization” models of major call types produced by the common marmoset ( Callithrix jacchus). The main findings are as follows. 1) Acoustical parameters were measured from a database of the four major call types of the common marmoset. This database was obtained from eight different individuals, and for each individual, we typically obtained hundreds of samples of each major call type. 2) These feature measurements were employed to parameterize models defining representative virtual vocalizations of each call type for each of the eight animals as well as an overall species-representative virtual vocalization averaged across individuals for each call type. 3) Using the same feature-measurement that was applied to the vocalization samples, we measured acoustical features of the virtual vocalizations, including features not explicitly modeled and found the virtual vocalizations to be statistically representative of the callers and call types. 4) The accuracy of the virtual vocalizations was further confirmed by comparing neural responses to real and synthetic virtual vocalizations recorded from awake marmoset auditory cortex. We found a strong agreement between the responses to token vocalizations and their synthetic counterparts. 5) We demonstrated how these virtual vocalization stimuli could be employed to precisely and quantitatively define the notion of vocalization “selectivity” by using stimuli with parameter values both within and outside the naturally occurring ranges. We also showed the potential of the virtual vocalization stimuli in studying issues related to vocalization categorizations by morphing between different call types and individual callers.

mBio ◽  
2021 ◽  
Author(s):  
Lifeng Zhu ◽  
Qinnan Yang ◽  
Mallory J. Suhr Van Haute ◽  
Car Reen Kok ◽  
Joao Carlos Gomes-Neto ◽  
...  

Bifidobacterium species are recognized as important, beneficial microbes in the human gut microbiome, and their ability colonize individuals at different stages of life is influenced by poorly understood interactions between host, dietary, environmental, and ecological factors. The common marmoset is an emerging nonhuman primate model with a short maturation period, making this model amenable to study of the microbiome throughout a life history.


2015 ◽  
Vol 15 (12) ◽  
pp. 580 ◽  
Author(s):  
ChiaChun Hung ◽  
Julian Day-Cooney ◽  
Brian Russ ◽  
Cecil Yen ◽  
Lucia Notardonato ◽  
...  

Author(s):  
Yaniv Aspis ◽  
Krysia Broda ◽  
Alessandra Russo ◽  
Jorge Lobo

We introduce a novel approach for the computation of stable and supported models of normal logic programs in continuous vector spaces by a gradient-based search method. Specifically, the application of the immediate consequence operator of a program reduct can be computed in a vector space. To do this, Herbrand interpretations of a propositional program are embedded as 0-1 vectors in $\mathbb{R}^N$ and program reducts are represented as matrices in $\mathbb{R}^{N \times N}$. Using these representations we prove that the underlying semantics of a normal logic program is captured through matrix multiplication and a differentiable operation. As supported and stable models of a normal logic program can now be seen as fixed points in a continuous space, non-monotonic deduction can be performed using an optimisation process such as Newton's method. We report the results of several experiments using synthetically generated programs that demonstrate the feasibility of the approach and highlight how different parameter values can affect the behaviour of the system.


1982 ◽  
Vol 11 (4) ◽  
pp. 242-251 ◽  
Author(s):  
N.H.F. Wilson ◽  
P.M. Speight ◽  
D.L. Gardner

2021 ◽  
Author(s):  
Rafael Senos ◽  
Hildebrando Benedicto ◽  
Cristiane del Rio do Valle ◽  
Rodrigo del Rio do Valle ◽  
Penelope Nayudu ◽  
...  

2008 ◽  
Vol 24 (3) ◽  
pp. 536-545 ◽  
Author(s):  
N. Hecht ◽  
R. Behr ◽  
A. Hild ◽  
M. Bergmann ◽  
W. Weidner ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Christoph Curths ◽  
Sascha Knauf ◽  
Franz-Josef Kaup

Sign in / Sign up

Export Citation Format

Share Document