scholarly journals Fixation target representation in prefrontal cortex during the antisaccade task

2017 ◽  
Vol 117 (6) ◽  
pp. 2152-2162 ◽  
Author(s):  
Xin Zhou ◽  
Christos Constantinidis

Neurons that discharge strongly during the time period of fixation of a visual target and cease to discharge before saccade initiation have been described in the brain stem, superior colliculus, and cortical areas. In subcortical structures, fixation neurons play a reciprocal role with saccadic neurons during the generation of eye movements. Their role in the dorsolateral prefrontal cortex is less obvious, and it is not known if they are activated by fixation, inhibit saccade generation, or play a role in more complex functions such as the inhibition of inappropriate responses. We examined the properties of prefrontal fixation neurons in the context of an antisaccade task, which requires an eye movement directed away from a prepotent visual stimulus. We tested monkeys with variants of the task, allowing us to dissociate activity synchronized on the fixation offset, presentation of the visual stimulus, and saccadic onset. Fixation neuron activity latency was most strongly tied to the offset of the fixation point across task variants. It was not well predicted by the appearance of the visual stimulus, which is essential for planning of the correct eye movement and inhibiting inappropriate ones. Activity of fixation neurons was generally negatively correlated with that of saccade neurons; however, critical differences in timing make it unlikely that they provide precisely timed signals for the generation of eye movements. These results demonstrate the role of fixation neurons in the prefrontal cortex during tasks requiring timing of appropriate eye movement and inhibition of inappropriate actions. NEW & NOTEWORTHY Properties of neurons that discharge during eye fixation and go silent before saccade initiation have been described in subcortical structures involved in eye movement generation, but their role in the dorsolateral prefrontal cortex presents a puzzle. Our results demonstrate the role of fixation neurons in the prefrontal cortex during tasks requiring precise timing of appropriate eye movement and inhibition of inappropriate actions.

2021 ◽  
Author(s):  
Xue Xia ◽  
Yansong Li ◽  
Yanqiu Wang ◽  
Jing Xia ◽  
Yitong Lin ◽  
...  

2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


2016 ◽  
Vol 113 (52) ◽  
pp. E8492-E8501 ◽  
Author(s):  
Roland G. Benoit ◽  
Daniel J. Davies ◽  
Michael C. Anderson

Imagining future events conveys adaptive benefits, yet recurrent simulations of feared situations may help to maintain anxiety. In two studies, we tested the hypothesis that people can attenuate future fears by suppressing anticipatory simulations of dreaded events. Participants repeatedly imagined upsetting episodes that they feared might happen to them and suppressed imaginings of other such events. Suppressing imagination engaged the right dorsolateral prefrontal cortex, which modulated activation in the hippocampus and in the ventromedial prefrontal cortex (vmPFC). Consistent with the role of the vmPFC in providing access to details that are typical for an event, stronger inhibition of this region was associated with greater forgetting of such details. Suppression further hindered participants’ ability to later freely envision suppressed episodes. Critically, it also reduced feelings of apprehensiveness about the feared scenario, and individuals who were particularly successful at down-regulating fears were also less trait-anxious. Attenuating apprehensiveness by suppressing simulations of feared events may thus be an effective coping strategy, suggesting that a deficiency in this mechanism could contribute to the development of anxiety.


2019 ◽  
Vol 45 (4) ◽  
pp. 694-702 ◽  
Author(s):  
Nicholas L. Balderston ◽  
Emily M. Beydler ◽  
Camille Roberts ◽  
Zhi-De Deng ◽  
Thomas Radman ◽  
...  

AbstractMuch of the mechanistic research on anxiety focuses on subcortical structures such as the amygdala; however, less is known about the distributed cortical circuit that also contributes to anxiety expression. One way to learn about this circuit is to probe candidate regions using transcranial magnetic stimulation (TMS). In this study, we tested the involvement of the dorsolateral prefrontal cortex (dlPFC), in anxiety expression using 10 Hz repetitive TMS (rTMS). In a within-subject, crossover experiment, the study measured anxiety in healthy subjects before and after a session of 10 Hz rTMS to the right dorsolateral prefrontal cortex (dlPFC). It used threat of predictable and unpredictable shock to induce anxiety and anxiety potentiated startle to assess anxiety. Counter to our hypotheses, results showed an increase in anxiety-potentiated startle following active but not sham rTMS. These results suggest a mechanistic link between right dlPFC activity and physiological anxiety expression. This result supports current models of prefrontal asymmetry in affect, and lays the groundwork for further exploration into the cortical mechanisms mediating anxiety, which may lead to novel anxiety treatments.


1996 ◽  
Vol 107 (3) ◽  
Author(s):  
Alvaro Pascual-Leone ◽  
EricM. Wassermann ◽  
Jordan Grafman ◽  
Mark Hallett

2018 ◽  
Vol 128 ◽  
pp. 47-51 ◽  
Author(s):  
Ludovico Mineo ◽  
Alexander Fetterman ◽  
Carmen Concerto ◽  
Michael Warren ◽  
Carmenrita Infortuna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document