Sound Localization by Barn Owls in a Simulated Echoic Environment

2006 ◽  
Vol 95 (6) ◽  
pp. 3571-3584 ◽  
Author(s):  
Matthew W. Spitzer ◽  
Terry T. Takahashi

We examined the accuracy and precision with which the barn owl ( Tyto alba) turns its head toward sound sources under conditions that evoke the precedence effect (PE) in humans. Stimuli consisted of 25-ms noise bursts emitted from two sources, separated horizontally by 40°, and temporally by 3–50 ms. At delays from 3 to 10 ms, head turns were always directed at the leading source, and were nearly as accurate and precise as turns toward single sources, indicating that the leading source dominates perception. This lead dominance is particularly remarkable, first, because on some trials, the lagging source was significantly higher in amplitude than the lead, arising from the directionality of the owl's ears, and second, because the temporal overlap of the two sounds can degrade the binaural cues with which the owl localizes sounds. With increasing delays, the influence of the lagging source became apparent as the head saccades became increasingly biased toward the lagging source. Furthermore, on some of the trials at delays ≥20 ms, the owl turned its head, first, in the direction of one source, and then the other, suggesting that it was able to resolve two separately localizable sources. At all delays <50 ms, response latencies were longer for paired sources than for single sources. With the possible exception of response latency, these findings demonstrate that the owl exhibits precedence phenomena in sound localization similar to those in humans and cats, and provide a basis for comparison with neurophysiological data.

2013 ◽  
Vol 109 (4) ◽  
pp. 924-931 ◽  
Author(s):  
Caitlin S. Baxter ◽  
Brian S. Nelson ◽  
Terry T. Takahashi

Echoes and sounds of independent origin often obscure sounds of interest, but echoes can go undetected under natural listening conditions, a perception called the precedence effect. How does the auditory system distinguish between echoes and independent sources? To investigate, we presented two broadband noises to barn owls ( Tyto alba) while varying the similarity of the sounds' envelopes. The carriers of the noises were identical except for a 2- or 3-ms delay. Their onsets and offsets were also synchronized. In owls, sound localization is guided by neural activity on a topographic map of auditory space. When there are two sources concomitantly emitting sounds with overlapping amplitude spectra, space map neurons discharge when the stimulus in their receptive field is louder than the one outside it and when the averaged amplitudes of both sounds are rising. A model incorporating these features calculated the strengths of the two sources' representations on the map (B. S. Nelson and T. T. Takahashi; Neuron 67: 643–655, 2010). The target localized by the owls could be predicted from the model's output. The model also explained why the echo is not localized at short delays: when envelopes are similar, peaks in the leading sound mask corresponding peaks in the echo, weakening the echo's space map representation. When the envelopes are dissimilar, there are few or no corresponding peaks, and the owl localizes whichever source is predicted by the model to be less masked. Thus the precedence effect in the owl is a by-product of a mechanism for representing multiple sound sources on its map.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009569
Author(s):  
Julia C. Gorman ◽  
Oliver L. Tufte ◽  
Anna V. R. Miller ◽  
William M. DeBello ◽  
José L. Peña ◽  
...  

Emergent response properties of sensory neurons depend on circuit connectivity and somatodendritic processing. Neurons of the barn owl’s external nucleus of the inferior colliculus (ICx) display emergence of spatial selectivity. These neurons use interaural time difference (ITD) as a cue for the horizontal direction of sound sources. ITD is detected by upstream brainstem neurons with narrow frequency tuning, resulting in spatially ambiguous responses. This spatial ambiguity is resolved by ICx neurons integrating inputs over frequency, a relevant processing in sound localization across species. Previous models have predicted that ICx neurons function as point neurons that linearly integrate inputs across frequency. However, the complex dendritic trees and spines of ICx neurons raises the question of whether this prediction is accurate. Data from in vivo intracellular recordings of ICx neurons were used to address this question. Results revealed diverse frequency integration properties, where some ICx neurons showed responses consistent with the point neuron hypothesis and others with nonlinear dendritic integration. Modeling showed that varied connectivity patterns and forms of dendritic processing may underlie observed ICx neurons’ frequency integration processing. These results corroborate the ability of neurons with complex dendritic trees to implement diverse linear and nonlinear integration of synaptic inputs, of relevance for adaptive coding and learning, and supporting a fundamental mechanism in sound localization.


2015 ◽  
Vol 114 (5) ◽  
pp. 2991-3001 ◽  
Author(s):  
Andrew D. Brown ◽  
Heath G. Jones ◽  
Alan Kan ◽  
Tanvi Thakkar ◽  
G. Christopher Stecker ◽  
...  

Normal-hearing human listeners and a variety of studied animal species localize sound sources accurately in reverberant environments by responding to the directional cues carried by the first-arriving sound rather than spurious cues carried by later-arriving reflections, which are not perceived discretely. This phenomenon is known as the precedence effect (PE) in sound localization. Despite decades of study, the biological basis of the PE remains unclear. Though the PE was once widely attributed to central processes such as synaptic inhibition in the auditory midbrain, a more recent hypothesis holds that the PE may arise essentially as a by-product of normal cochlear function. Here we evaluated the PE in a unique human patient population with demonstrated sensitivity to binaural information but without functional cochleae. Users of bilateral cochlear implants (CIs) were tested in a psychophysical task that assessed the number and location(s) of auditory images perceived for simulated source-echo (lead-lag) stimuli. A parallel experiment was conducted in a group of normal-hearing (NH) listeners. Key findings were as follows: 1) Subjects in both groups exhibited lead-lag fusion. 2) Fusion was marginally weaker in CI users than in NH listeners but could be augmented by systematically attenuating the amplitude of the lag stimulus to coarsely simulate adaptation observed in acoustically stimulated auditory nerve fibers. 3) Dominance of the lead in localization varied substantially among both NH and CI subjects but was evident in both groups. Taken together, data suggest that aspects of the PE can be elicited in CI users, who lack functional cochleae, thus suggesting that neural mechanisms are sufficient to produce the PE.


2008 ◽  
Vol 211 (18) ◽  
pp. 2976-2988 ◽  
Author(s):  
L. Hausmann ◽  
D. T. T. Plachta ◽  
M. Singheiser ◽  
S. Brill ◽  
H. Wagner

2018 ◽  
Vol 114 (11/12) ◽  
Author(s):  
Ashley Kruger ◽  
Shaw Badenhorst

Excavations during November 2013 in the Rising Star Cave, South Africa uncovered over 1550 specimens of a new hominin, Homo naledi. A total of four modern bird bones were collected from the surface of the Dinaledi Chamber during the first phase of the initial excavations. While mentioned in the geological and taphonomic descriptions, the presumably modern or sub-modern bird remains have not been formally identified or described until now. Here we identify these remains as indistinguishable from those of a modern barn owl (Tyto alba). Tyto alba is today common to the region and known to contribute microfaunal remains at many Plio-Pleistocene sites in the Cradle of Humankind. Based on the greatest length measurement and breadth of the proximal articulation of the specimen, it is suggested that the owl from the Dinaledi Chamber is more similar to that of females of the species, despite the small sample sizes available for comparison. It is unclear how the remains of this female owl came to be in the remote Dinaledi Chamber. Significance: Owl bones from the Dinaledi Chamber are the only other macro-vertebrate remains from this Chamber. The other remains discovered are that of more than 15 individuals of the enigmatic Homo naledi. The remains of the Dinaledi Chamber owl further our understanding of the contents of the important material contained within the Dinaledi system as they are the only more recent fossils to be recovered from this area of the Rising Star Cave system and are therefore important in and of themselves as an indicator that more proximal parts of the Rising Star Cave system have been suitable for use by barn owls at greater time depths than the present.


2001 ◽  
Vol 85 (2) ◽  
pp. 1009-1012 ◽  
Author(s):  
Anja Johnen ◽  
Hermann Wagner ◽  
Bernhard H. Gaese

Attentional influence on sound-localization behavior of barn owls was investigated in a cross-modal spatial cuing paradigm. After being cued to the most probable target side with a visual cuing stimulus, owls localized upcoming auditory target stimuli with a head turn toward the position of the sound source. In 80% of the trials, cuing stimuli pointed toward the side of the upcoming target stimulus (valid configuration), and in 20% they pointed toward the opposite side (invalid configuration). We found that owls initiated the head turns by a mean of 37.4 ms earlier in valid trials, i.e., mean response latencies of head turns were reduced by 16% after a valid cuing stimulus. Thus auditory stimuli appearing at the cued side were processed faster than stimuli appearing at the uncued side, indicating the influence of a spatial-selective attention mechanism. Turning angles were not different when owls turned their head toward a cued or an uncued location. Other types of attention influencing sound localization, e.g., a reduction of response latency as a function of the duration of cue-target delay, could not be observed. This study is the first attempt to investigate attentional influences on sound localization in an animal model.


2021 ◽  
Vol 785 ◽  
pp. 147403
Author(s):  
Ségolène Humann-Guilleminot ◽  
Shirley Laurent ◽  
Pierre Bize ◽  
Alexandre Roulin ◽  
Gaétan Glauser ◽  
...  

Author(s):  
Vivien Cosandey ◽  
Robin Séchaud ◽  
Paul Béziers ◽  
Yannick Chittaro ◽  
Andreas Sanchez ◽  
...  

AbstractBird nests are specialized habitats because of their particular composition including nest detritus and bird droppings. In consequence, they attract a specialized arthropod community considered as nidicolous, which includes species only found in bird nests (strictly nidicolous) or sometimes found in bird nests (facultatively nidicolous). Because the factors influencing the entomofauna in bird nests are poorly understood, in autumn 2019, we collected nest material in 86 Barn Owl (Tyto alba) nest boxes. We investigated whether the invertebrate species richness was related to Barn Owl nest box occupancy, the density of available nest boxes and the landscape structure. We found 3,321 nidicolous beetle specimens belonging to 24 species. Species richness of strictly nidicolous beetles was 2.7 times higher in nest boxes occupied by a family of Barn Owls the previous spring compared to unoccupied nest boxes. It was also higher in sites that were more often occupied by Barn Owls in the five previous years and in areas surrounded by a higher proportion of crop fields. For facultatively nidicolous beetles, the density of Barn Owl nest boxes enhanced the species richness. In conclusion, our study suggests that the strictly nidicolous beetles benefit from occupied nest boxes of Barn Owls, whereas facultatively nidicolous beetles look for nest boxes independently of whether Barn Owls occupy them. Our study highlights the importance of bird nests for a suite of invertebrates.


1992 ◽  
Vol 49 (7) ◽  
pp. 1486-1492 ◽  
Author(s):  
D. L. Roddick ◽  
R. J. Miller

Assessment of the damage of one fishery by another requires knowledge of the overlap, in time and space, of the damaging fishing effort and the abundance of the damaged species, as well as a measure of the rate of damage. This approach was used to measure the impact of inshore scallop dragging on lobsters in Nova Scotia. Areas of reported co-occurrence of lobster and scallop grounds were surveyed by divers to determine the extent of overlap. Only 2 of 52 sites surveyed had lobsters on scallop grounds that could be dragged. Divers surveyed one site six times during 1987 and 1988 and found lobsters most abundant during August and September. Only 2% of the lobsters in the path of scallop drags were either captured or injured. The estimated value of lobsters destroyed by dragging for scallops during periods of peak lobster abundance was minor: $757 at one site and $176 at the other. Restricting dragging to periods of low lobster abundance significantly reduces this cost.


2011 ◽  
Vol 4 (4) ◽  
pp. 385-394 ◽  
Author(s):  
J. Meneely ◽  
F. Ricci ◽  
S. Vesco ◽  
M. Abouzied ◽  
M. Sulyok ◽  
...  

Many different immunochemical platforms exist for the screening of naturally occurring contaminants in food from the low cost enzyme linked immunosorbent assays (ELISA) to the expensive instruments such as optical biosensors based on the phenomenon of surface plasmon resonance (SPR). The primary aim of this study was to evaluate and compare a number of these platforms to assess their accuracy and precision when applied to naturally contaminated samples containing HT-2/T-2 mycotoxins. Other important factors considered were the speed of analysis, ease of use (sample preparation techniques and use of the equipment) and ultimately the cost implications. The three screening procedures compared included an SPR biosensor assay, a commercially available ELISA and an enzymelinked immunomagnetic electrochemical array (ELIME array). The qualitative data for all methods demonstrated very good overall agreements with each other, however on comparison with mass spectrometry confirmatory results, the ELISA and SPR assay performed slightly better than the ELIME array, exhibiting an overall agreement of 95.8% compared to 91.7%. Currently, SPR is more costly than the other two platforms and can only be used in the laboratory whereas in theory both the ELISA and ELIME array are portable and can be used in the field, but ultimately this is dependent on the sample preparation techniques employed. Sample preparative techniques varied for all methods evaluated, the ELISA was the most simple to perform followed by that of the SPR method. The ELIME array involved an additional clean-up step thereby increasing both the time and cost of analysis. Therefore in the current format, field use would not be an option for the ELIME array. In relation to speed of analysis, the ELISA outperformed the other methods.


Sign in / Sign up

Export Citation Format

Share Document