Intracortical Pathways Mediate Nonlinear Fast Oscillation (>200 Hz) Interactions Within Rat Barrel Cortex

2005 ◽  
Vol 93 (5) ◽  
pp. 2934-2939 ◽  
Author(s):  
Richard J. Staba ◽  
Tyler D. Ard ◽  
Alexander M. Benison ◽  
Daniel S. Barth

Whisker evoked fast oscillations (FOs; >200 Hz) within the rodent posteromedial barrel subfield are thought to reflect very rapid integration of multiwhisker stimuli, yet the pathways mediating FO interactions remain unclear and may involve interactions within thalamus and/or cortex. In the present study using anesthetized rats, a cortical incision was made between sites representing the stimulated whiskers to determine how intracortical networks contributed to patterns of FOs. With cortex intact, simultaneous stimulation of a pair of whiskers aligned in a row evoked supralinear responses between sites separated by several millimeters. In contrast, stimulation of a nonadjacent pair of whiskers within an arc evoked FOs with no evidence for nonlinear interactions. However, stimulation of an adjacent pair of whiskers in an arc did evoke supralinear responses. After a cortical cut, supralinear interactions associated with FOs within a row were lost. These data indicate a distinct bias for stronger long-range connectivity that extends along barrel rows and that horizontal intracortical pathways exclusively mediate FO-related integration of tactile information.

2021 ◽  
Author(s):  
Jung-uk Lee ◽  
Wookjin Shin ◽  
Yongjun Lim ◽  
Jungsil Kim ◽  
Woon Ryoung Kim ◽  
...  

2011 ◽  
Vol 240 (9-10) ◽  
pp. 805-813 ◽  
Author(s):  
C. Wang ◽  
P.G. Kevrekidis ◽  
D.J. Frantzeskakis ◽  
B.A. Malomed

2007 ◽  
Vol 77 (4) ◽  
pp. 717-722 ◽  
Author(s):  
Jacques Bernabé ◽  
Pierre Clément ◽  
Pierre Denys ◽  
Laurent Alexandre ◽  
François Giuliano

2021 ◽  
Author(s):  
Anthony Renard ◽  
Evan Harrell ◽  
Brice Bathallier

Abstract Rodents depend on olfaction and touch to meet many of their fundamental needs. The joint significance of these sensory systems is underscored by an intricate coupling between sniffing and whisking. However, the impact of simultaneous olfactory and tactile inputs on sensory representations in the cortex remains elusive. To study these interactions, we recorded large populations of barrel cortex neurons using 2-photon calcium imaging in head-fixed mice during olfactory and tactile stimulation. We find that odors alter barrel cortex activity in at least two ways, first by enhancing whisking, and second by central cross-talk that persists after whisking is abolished by facial nerve sectioning. Odors can either enhance or suppress barrel cortex neuronal responses, and while odor identity can be decoded from population activity, it does not interfere with the tactile representation. Thus, barrel cortex represents olfactory information which, in the absence of learned associations, is coded independently of tactile information.


2008 ◽  
Vol 100 (2) ◽  
pp. 681-689 ◽  
Author(s):  
Radi Masri ◽  
Tatiana Bezdudnaya ◽  
Jason C. Trageser ◽  
Asaf Keller

In all sensory systems, information is processed along several parallel streams. In the vibrissa-to-barrel cortex system, these include the lemniscal system and the lesser-known paralemniscal system. The posterior medial nucleus (POm) is the thalamic structure associated with the latter pathway. Previous studies suggested that POm response latencies are positively correlated with stimulation frequency and negatively correlated with response duration, providing a basis for a phase locked loop-temporal decoding of stimulus frequency. We tested this hypothesis by analyzing response latencies of POm neurons, in both awake and anesthetized rats, to vibrissae deflections at frequencies between 0.3 and 11 Hz. We found no significant, systematic correlation between stimulation frequency and the latency or duration of POm responses. We obtained similar findings from recording in awake rats, in rats under different anesthetics, and in anesthetized rats in which the reticular activating system was stimulated. These findings suggest that stimulus frequency is not reliably reflected in response latency of POm neurons. We also tested the hypothesis that POm neurons respond preferentially to sensor motion, that is, they respond to whisking in air, without contacts. We recorded from awake, head-restrained rats while monitoring vibrissae movements. All POm neurons responded to passive whisker deflections, but none responded to noncontact whisking. Thus like their counterparts in the trigeminal ganglion, POm neurons may not reliably encode whisking kinematics. These observations suggest that POm neurons might not faithfully encode vibrissae inputs to provide reliable information on vibrissae movements or contacts.


2002 ◽  
Vol 928 (1-2) ◽  
pp. 113-125 ◽  
Author(s):  
Maria V. Zaretskaia ◽  
Dmitry V. Zaretsky ◽  
Anantha Shekhar ◽  
Joseph A. DiMicco

Sign in / Sign up

Export Citation Format

Share Document