shivering thermogenesis
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 49)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Gina Wade ◽  
Ayren McGahee ◽  
James M. Ntambi ◽  
Judith Simcox

Non-shivering thermogenesis is an energy demanding process that primarily occurs in brown and beige adipose tissue. Beyond regulating body temperature, these thermogenic adipocytes regulate systemic glucose and lipid homeostasis. Historically, research on thermogenic adipocytes has focused on glycolytic metabolism due to the discovery of active brown adipose tissue in adult humans through glucose uptake imaging. The importance of lipids in non-shivering thermogenesis has more recently been appreciated. Uptake of circulating lipids into thermogenic adipocytes is necessary for body temperature regulation and whole-body lipid homeostasis. A wide array of circulating lipids contribute to thermogenic potential including free fatty acids, triglycerides, and acylcarnitines. This review will summarize the mechanisms and regulation of lipid uptake into brown adipose tissue including protein-mediated uptake, lipoprotein lipase activity, endocytosis, vesicle packaging, and lipid chaperones. We will also address existing gaps in knowledge for cold induced lipid uptake into thermogenic adipose tissue.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1914
Author(s):  
Irina P. Voronova

The present review summarizes the data concerning the influence of serotonin (5-HT) receptors on body temperature in warm-blooded animals and on processes associated with its maintenance. This review includes the most important part of investigations from the first studies to the latest ones. The established results on the pharmacological activation of 5-HT1A, 5-HT3, 5-HT7 and 5-HT2 receptor types are discussed. Such activation of the first 3 type of receptors causes a decrease in body temperature, whereas the 5-HT2 activation causes its increase. Physiological mechanisms leading to changes in body temperature as a result of 5-HT receptors’ activation are discussed. In case of 5-HT1A receptor, they include an inhibition of shivering and non-shivering thermogenesis, as well simultaneous increase of peripheral blood flow, i.e., the processes of heat production and heat loss. The physiological processes mediated by 5-HT2 receptor are opposite to those of the 5-HT1A receptor. Mechanisms of 5-HT3 and 5-HT7 receptor participation in these processes are yet to be studied in more detail. Some facts indicating that in natural conditions, without pharmacological impact, these 5-HT receptors are important links in the system of temperature homeostasis, are also discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hang Cheng ◽  
Rajaa Sebaa ◽  
Nikita Malholtra ◽  
Baptiste Lacoste ◽  
Ziyad El Hankouri ◽  
...  

AbstractNaked mole-rats are among the most hypoxia-tolerant mammals. During hypoxia, their body temperature (Tb) decreases via unknown mechanisms to conserve energy. In small mammals, non-shivering thermogenesis in brown adipose tissue (BAT) is critical to Tb regulation; therefore, we hypothesize that hypoxia decreases naked mole-rat BAT thermogenesis. To test this, we measure changes in Tb during normoxia and hypoxia (7% O2; 1–3 h). We report that interscapular thermogenesis is high in normoxia but ceases during hypoxia, and Tb decreases. Furthermore, in BAT from animals treated in hypoxia, UCP1 and mitochondrial complexes I-V protein expression rapidly decrease, while mitochondria undergo fission, and apoptosis and mitophagy are inhibited. Finally, UCP1 expression decreases in hypoxia in three other social African mole-rat species, but not a solitary species. These findings suggest that the ability to rapidly down-regulate thermogenesis to conserve oxygen in hypoxia may have evolved preferentially in social species.


2021 ◽  
Author(s):  
Sinan Kaya-Zeeb ◽  
Lorenz Engelmayer ◽  
Jasmin Bayer ◽  
Heike Bähre ◽  
Roland Seifert ◽  
...  

In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus we conclude, that octopamine is necessary and sufficient for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment.


Author(s):  
Cristina Garcia-Beltran ◽  
Rubén Cereijo ◽  
Cristina Plou ◽  
Aleix Gavaldà-Navarro ◽  
Rita Malpique ◽  
...  

Abstract Context Brown adipose tissue (BAT) is particularly abundant in neonates but its association with measures of adiposity and metabolic health in early infancy is poorly delineated. Besides sustaining non-shivering thermogenesis, BAT secretes brown adipokines that act on systemic metabolism. The chemokine CXCL14 has been identified as a brown adipokine in experimental studies. Objective To determine the relationships among BAT activity, adiposity and circulating CXCL14 levels in the first year of life in girls and boys. Design, setting and participants Indices of fat accretion, circulating endocrine-metabolic parameters and serum CXCL14 levels were assessed longitudinally in a cohort of infants at birth and at 4 and 12 months. BAT activity was estimated using infrared thermography only at age 12 months. Main outcome measures Weight and length Z-scores, total and abdominal fat content (by DXA), BAT activity at the posterior-cervical and supraclavicular regions, serum levels of glucose, insulin, insulin-like growth factor-I, high-molecular-weight adiponectin and CXCL14; CXCL14 transcript levels in neonatal BAT and liver. Results Posterior-cervical BAT was more active in girls than in boys (P=0.02). BAT activity was negatively associated with adiposity parameters only in girls. CXCL14 levels were higher in girls than in boys at age 12 months and correlated positively with the area of active posterior-cervical BAT in girls. Neonatal BAT showed high CXCL14 gene expression levels. Conclusions BAT activity and the levels of CXCL14 -a potential surrogate of BAT activity, are sex-specific in the first year of life. Posterior-cervical BAT activity associates negatively with indices of adiposity only in girls.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carolin Muley ◽  
Stefan Kotschi ◽  
Alexander Bartelt

The acclimatization of brown adipose tissue (BAT) to sustained cold exposure requires an adaptive increase in proteasomal protein quality control. Ubiquilins represent a recently identified family of shuttle proteins with versatile functions in protein degradation, such as facilitating substrate targeting and proteasomal degradation. However, whether ubiquilins participate in brown adipocyte function has not been investigated so far. Here, we determine the role of ubiquilins for proteostasis and non-shivering thermogenesis in brown adipocytes. We found that Ubqln1, 2 and 4 are highly expressed in BAT and their expression was induced by cold and proteasomal inhibition. Surprisingly, silencing of ubiquilin gene expression (one or multiple in combinations) did not lead to aggravated ER stress or inflammation. Moreover, ubiquitin level and proteasomal activity under basal conditions were not impacted by loss of ubiquilins. Also, non-shivering thermogenesis measured by norepinephrine-induced respiration remained intact after loss of ubiquilins. In conclusion, ubiquilin proteins are highly abundant in BAT and regulated by cold, but they are dispensable for brown adipocyte proteostasis and thermogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruping Pan ◽  
Yong Chen

Exercise plays an important role in the physiology, often depending on its intensity, duration, and frequency. It increases the production of reactive oxygen species (ROS). Meanwhile, it also increases antioxidant enzymes involved in the oxidative damage defense. Prolonged, acute, or strenuous exercise often leads to an increased radical production and a subsequent oxidative stress in the skeletal muscles, while chronic regular or moderate exercise results in a decrease in oxidative stress. Notably, under pathological state, such as obesity, aging, etc., ROS levels could be elevated in humans, which could be attenuated by proper exercise. Significantly, exercise stimulates the development of beige adipose tissue and potentially influence the function of brown adipose tissue (BAT), which is known to be conducive to a metabolic balance through non-shivering thermogenesis (NST) and may protect from oxidative stress. Exercise-related balance of the ROS levels is associated with a healthy metabolism in humans. In this review, we summarize the integrated effects of exercise on oxidative metabolism, and especially focus on the role of brown and beige adipose tissues in this process, providing more evidence and knowledge for a better management of exercise-induced oxidative stress.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dan Jiao ◽  
Kaixi Ji ◽  
Wenqiang Wang ◽  
Hu Liu ◽  
Jianwei Zhou ◽  
...  

Cold-induced thermogenesis plays an important role in the survival of lambs exposed to low air temperatures. The liver produces and mediates heat production in mammals; however, to date, little is known about the role of liver genes in cold-induced thermogenesis in lambs. In this study, the difference in the liver transcriptome between Altay and Hu ewe lambs was compared. Because of different backgrounds of the two breeds, we hypothesized that the transcriptome profiles of the liver would differ between breeds when exposed to cold. Cold-exposed Altay lambs activated 8 candidate genes (ACTA1, MYH1, MYH2, MYL1, MYL2, TNNC1, TNNC2, and TNNT3) involved in muscle shivering thermogenesis; 3 candidate genes (ATP2A1, SLN, and CKM) involved in muscle nonshivering thermogenesis related to the Ca2+ signal and creatine cycle; and 6 candidate genes (PFKM, ALDOC, PGAM2, ENO2, ENO3, and ENO4) involved in enhancing liver metabolism. In contrast, the liver may not act as the main tissue for thermogenesis in cold-exposed Hu lambs. We concluded that Altay lambs rely on liver-mediated shivering and nonshivering thermogenesis by muscle tissue to a greater extent than Hu lambs. Results from this study could provide a theoretical foundation for the breeding and production of cold-resistant lambs.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2406
Author(s):  
Chantal R. Ryan ◽  
Michael S. Finch ◽  
Tyler C. Dunham ◽  
Jensen E. Murphy ◽  
Brian D. Roy ◽  
...  

White adipose tissue (WAT) is a dynamic endocrine organ that can play a significant role in thermoregulation. WAT has the capacity to adopt structural and functional characteristics of the more metabolically active brown adipose tissue (BAT) and contribute to non-shivering thermogenesis under specific stimuli. Non-shivering thermogenesis was previously thought to be uncoupling protein 1 (UCP1)-dependent however, recent evidence suggests that UCP1-independent mechanisms of thermogenesis exist. Namely, futile creatine cycling has been identified as a contributor to WAT thermogenesis. The purpose of this study was to examine the efficacy of creatine supplementation to alter mitochondrial markers as well as adipocyte size and multilocularity in inguinal (iWAT), gonadal (gWAT), and BAT. Thirty-two male and female Sprague-Dawley rats were treated with varying doses (0 g/L, 2.5 g/L, 5 g/L, and 10 g/L) of creatine monohydrate for 8 weeks. We demonstrate that mitochondrial markers respond in a sex and depot specific manner. In iWAT, female rats displayed significant increases in COXIV, PDH-E1alpha, and cytochrome C protein content. Male rats exhibited gWAT specific increases in COXIV and PDH-E1alpha protein content. This study supports creatine supplementation as a potential method of UCP1-independant thermogenesis and highlights the importance of taking a sex-specific approach when examining the efficacy of browning therapeutics in future research.


Author(s):  
Wuping Sun ◽  
Yixuan Luo ◽  
Fei Zhang ◽  
Shuo Tang ◽  
Tao Zhu

Obesity prevalence became a severe global health problem and it is caused by an imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a major site of mammalian non-shivering thermogenesis or energy dissipation. Thus, modulation of BAT thermogenesis might be a promising application for body weight control and obesity prevention. TRP channels are non-selective calcium-permeable cation channels mainly located on the plasma membrane. As a research focus, TRP channels have been reported to be involved in the thermogenesis of adipose tissue, energy metabolism and body weight regulation. In this review, we will summarize and update the recent progress of the pathological/physiological involvement of TRP channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP channels as future therapeutic targets for preventing and combating human obesity and related-metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document