Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed

1975 ◽  
Vol 38 (3) ◽  
pp. 613-626 ◽  
Author(s):  
H. J. Wyatt ◽  
N. W. Daw

The receptive fields of directionally sensitive ganglion cells in the rabbit retina were analyzed. Several types of experiment showed that each point within the receptive field of the cell is inhibited by a fairly wide area of points around it, lying on each side of the preferred-null axis as well as along the preferred-null axis in the preferred direction. The excitatory or responsive receptive field of these cells has an inhibitory surround: this inhibitory surround appears to be simply an extension of the inhibition that occurs within the center of the receptive field. Points toward the edge of the responsive receptive field are inhibited from an area around them which extends into the center of the receptive field and also into the inhibitory surround. Directionally sensitive retinal ganglion cells respond to moving spots better than to moving bars. This is particularly true for objects moved perpendicularly to the preferred-null axis. In some cells a spot moved perpendicularly to the preferred-null axis will give a substantial response, whereas a bar moved in the same direction will give no response at all. This phenomenon can be explained by the inhibitory area which surrounds each point within the receptive field; since this inhibitory area is asymmetrical, it is also responsible for the cell's directional sensitivity. When two bars oriented perpendicular to the preferred null axis are flashed, one after the other, the response to the second bar is nearly always reduced by the presentation of the first bar. This is true for many temporal and spatial sequences corresponding to movement in the preferred direction, as well as those corresponding to movement in the null direction. However, there are temporal and spatial sequences, corresponding to movement in the preferred direction, for which the response to the second bar is unaffected by the presentation of the first bar. The time delay for this does not vary from cell to cell--it is always approximately 20 ms for on-off directionally sensitive cells and approximately 180 ms for on directionally sensitive cells. The spatial separation does vary from cell to cell, between 0.13 degrees and 1.2 degrees in 11 on-off directionally sensitive cells. This spatial separation, which gives linear summation of the response to two bars flashed 20 ms apart in the preferred direction, is correlated with the speed of movement which gives the best response for a bar moved through the receptive field in the preferred direction.

2000 ◽  
Vol 17 (2) ◽  
pp. 263-271 ◽  
Author(s):  
HIROYUKI UCHIYAMA ◽  
TAKAHIDE KANAYA ◽  
SHOICHI SONOHATA

One type of retinal ganglion cells prefers object motion in a particular direction. Neuronal mechanisms for the computation of motion direction are still unknown. We quantitatively mapped excitatory and inhibitory regions of receptive fields for directionally selective retinal ganglion cells in the Japanese quail, and found that the inhibitory regions are displaced about 1–3 deg toward the side where the null sweep starts, relative to the excitatory regions. Directional selectivity thus results from delayed transient suppression exerted by the nonconcentrically arranged inhibitory regions, and not by local directional inhibition as hypothesized by Barlow and Levick (1965).


1988 ◽  
Vol 1 (4) ◽  
pp. 377-385 ◽  
Author(s):  
Michael W. Levine ◽  
Roger P. Zimmerman

AbstractA new form of receptive field map, the response-component map, was developed to identify points within a receptive field that produce similar response patterns. The fields were probed with discretely flashed small spots of light. The magnitudes of the responses to stimulus onset and to stimulus offset elicited at each point were represented on the map by a vector radiating from the position representing the location of that point. Thus, response-component maps preserve the spatial distributions of responsivity and temporal nonlinearities. Points with similar response patterns were identified from a scatterplot in which the response at each spatial position was located in a plane representing the angles of the response-component vectors. Points with similar response characteristics that were also spatially contiguous were considered as a distinct response subregion within the receptive field.Barely 10% of the receptive fields of goldfish ganglion cells mapped with this technique proved as simple as the traditional concentric field described for retinal cells. In at least 17% of the cases, the field showed three concentric rings, with a very small “inner center” within the center of the field. In at least 50% of the cases, response subregions of different type lay side by side, rather than in a concentric configuration. Some subregions could be differentiated by the relative strengths of the responses to onset and offset of the stimulus spot, supporting the hypothesis that a push-pull system generates ganglion cell responses. Subregions were evident in successive mappings of the same cell, demonstrating they are not due to the vagaries of individual responses. They probably represent the spatial domains (or their intersections) of individual interneurons distal to the retinal ganglion cells. It is possible that position within the receptive field may be coded by the temporal pattern of the responses.


2007 ◽  
Vol 24 (6) ◽  
pp. 827-843 ◽  
Author(s):  
SUSMITA CHATTERJEE ◽  
DAVID K. MERWINE ◽  
FRANKLIN R. AMTHOR ◽  
NORBERTO M. GRZYWACZ

Neighboring retinal ganglion cells often spike synchronously, but the possible function and mechanism of this synchrony is unclear. Recently, the strength of the fast correlation between ON-OFF directionally selective cells of the rabbit retina was shown to be stimulus dependent. Here, we extend that study, investigating stimulus-dependent correlation among multiple ganglion-cell classes, using multi-electrode recordings. Our results generalized those for directionally selective cells. All cell pairs exhibiting significant spike synchrony did it for an extended edge but rarely for full-field stimuli. The strength of this synchrony did not depend on the amplitude of the response and correlations could be present even when the cells' receptive fields did not overlap. In addition, correlations tended to be orientation selective in a manner predictable by the relative positions of the receptive fields. Finally, extended edges and full-field stimuli produced significantly greater and smaller correlations than predicted by chance respectively. We propose an amacrine-network model for the enhancement and depression of correlation. Such an apparently purposeful control of correlation adds evidence for retinal synchrony playing a functional role in vision.


1980 ◽  
Vol 76 (6) ◽  
pp. 763-785 ◽  
Author(s):  
R A Crocker ◽  
J Ringo ◽  
M L Wolbarsht ◽  
H G Wagner

Extracellular microelectrode recordings were made from ganglion cells of the intact, in situ eyes of adult common domestic cats. Three different photopic systems, with peak spectral sensitivities at 450, 500, and 556 nm, were observed. All ganglion cells received input from a cone system with a peak spectral sensitivity of 556 nm. The blue-sensitive cone system was observed in about one-half of the ganglion cells studied. In each case the 450-nm cone system contributed to only one functional type of response, either ON or OFF, in the same cell. The other two photopic systems most often contributed to both the ON and OFF responses of an individual ganglion cell. In four cases the 450-nm cone system mediated responses that were opponent to those of the other two photopic systems. The third photopic mechanism has a peak spectral sensitivity at 500 nm and contributed to most receptive field surrounds and many receptive field centers. It is distinguished from the rod system by the occurrence of a break in both dark-adaptation curves and increment-sensitivity curves. No apparent differences in receptive field cone contributions between brisk-sustained and brisk-transient cells were seen.


1993 ◽  
Vol 69 (6) ◽  
pp. 2188-2199 ◽  
Author(s):  
N. M. Grzywacz ◽  
F. R. Amthor

1. We have investigated the facilitation of extracellularly recorded responses of ON-OFF directionally selective (DS) ganglion cells of the rabbit retina to two-slit preferred-direction apparent motion produced by both prolonged light steps, which simulate movement of an edge past two apertures, and light flashes, which simulate movement of a spot or slit. 2. Within the excitatory receptive-field center of DS ganglion cells, apparent motion with prolonged light steps elicits preferred-direction facilitation whose rise time (220 +/- 150 ms, average rise to 90% of maximum for 6 cells) is typically longer than the rise time of the excitatory response elicited by each slit. The decay time to baseline of facilitation during prolonged light steps is generally longer than 500 ms and hence greatly exceeds the typical duration of the excitatory response elicited by the slits. 3. Prolonged light steps are generally effective for facilitating any given excitatory receptive-field locus from a roughly ovoid area that typically extends on the order of 100-200 microns in the preferred direction, which is less than one-half the size of the excitatory receptive-field center. Within 100 microns, facilitation can occur for motion diagonal to the preferred-null axis as long as the projection of the motion on the preferred-null axis points in the preferred direction. 4. The time course of preferred-direction facilitation between two slits does not appear to have a strong systematical dependence on the interslit distance over the range in which facilitation is effective. 5. Short light flashes are ineffective for eliciting facilitation and, at sufficiently long interslit delays, elicit inhibition all around the test slit. This inhibition may be due to the antagonistic surround mechanism within the receptive-field center, which is effectively elicited by short-duration stimuli. 6. The effect of preferred-direction facilitation is addition-like, rather than multiplication-like. That is, the facilitatory effect of the first slit appears as the addition of a fixed value to the response-versus-contrast curve of the second slit, rather than a multiplication of the curve by a constant factor. The functional relationship between strength of facilitation and contrast of the first slit is sigmoidal, however, and thus nonlinear. 7. Experiments with long light steps show that the interaction between excitation and preferred-direction facilitation is largely segregated between the ON and OFF pathways.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 82 (6) ◽  
pp. 3527-3540 ◽  
Author(s):  
W. Martin Usrey ◽  
John B. Reppas ◽  
R. Clay Reid

Retinal ganglion cells and their target neurons in the principal layers of the lateral geniculate nucleus (LGN) of the thalamus have very similar, center-surround receptive fields. Although some geniculate neurons are dominated by a single retinal afferent, others receive both strong and weak inputs from several retinal afferents. In the present study, experiments were performed in the cat that examined the specificity and strength of monosynaptic connections between retinal ganglion cells and their target neurons. The responses of 205 pairs of retinal ganglion cells and geniculate neurons with overlapping receptive-field centers or surrounds were studied. Receptive fields were mapped quantitatively using a white-noise stimulus; connectivity was assessed by cross-correlating the retinal and geniculate spike trains. Of the 205 pairs, 12 were determined to have monosynaptic connections. Both the likelihood that cells were connected and the strength of connections increased with increasing similarity between retinal and geniculate receptive fields. Connections were never found between cells with <50% spatial overlap between their centers. The results suggest that although geniculate neurons often receive input from several retinal afferents, these multiple afferents represent a select subset of the retinal ganglion cells with overlapping receptive-field centers.


1999 ◽  
Vol 81 (2) ◽  
pp. 908-920 ◽  
Author(s):  
Steven H. DeVries

Correlated firing in rabbit retinal ganglion cells. A ganglion cell’s receptive field is defined as that region on the retinal surface in which a light stimulus will produce a response. While neighboring ganglion cells may respond to the same stimulus in a region where their receptive fields overlap, it generally has been assumed that each cell makes an independent decision about whether to fire. Recent recordings from cat and salamander retina using multiple electrodes have challenged this view of independent firing by showing that neighboring ganglion cells have an increased tendency to fire together within ±5 ms. However, there is still uncertainty about which types of ganglion cells fire together, the mechanisms that produce coordinated spikes, and the overall function of coordinated firing. To address these issues, the responses of up to 80 rabbit retinal ganglion cells were recorded simultaneously using a multielectrode array. Of the 11 classes of rabbit ganglion cells previously identified, coordinated firing was observed in five. Plots of the spike train cross-correlation function suggested that coordinated firing occurred through two mechanisms. In the first mechanism, a spike in an interneuron diverged to produce simultaneous spikes in two ganglion cells. This mechanism predominated in four of the five classes including the onbrisk transient cells. In the second mechanism, ganglion cells appeared to activate each other reciprocally. This was the predominant pattern of correlated firing in off brisk transient cells. By comparing the receptive field profiles of on andoff brisk transient cells, a peripheral extension of theoff brisk transient cell receptive field was identified that might be produced by lateral spike spread. Thus an individualoff brisk transient cell can respond both to a light stimulus directed at the center of its receptive field and to stimuli that activate neighboring off brisk transient cells through their receptive field centers.


1989 ◽  
Vol 2 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Joseph Bilotta ◽  
Israel Abramov

AbstractOrientation and direction tuning were examined in goldfish ganglion cells by drifting sinusoidal gratings across the receptive field of the cell. Each ganglion cell was first classified as X-, Y- or W-like based on its responses to a contrast-reversal grating positioned at various spatial phases of the cell's receptive field. Sinusoidal gratings were drifted at different orientations and directions across the receptive field of the cell; spatial frequency and contrast of the grating were also varied. It was found that some X-like cells responded similarly to all orientations and directions, indicating that these cells had circular and symmetrical fields. Other X-like cells showed a preference for certain orientations at high spatial frequencies suggesting that these cells possess an elliptical center mechanism (since only the center mechanism is sensitive to high spatial frequencies). In virtually all cases, X-like cells were not directionally tuned. All but one Y-like cell displayed orientation tuning but, as with X-like cells, orientation tuning appeared only at high spatial frequencies. A substantial portion of these Y-like cells also showed a direction preference. This preference was dependent on spatial frequency but in a manner different from orientation tuning, suggesting that these two phenomena result from different mechanisms. All W-like cells possessed orientation and direction tuning, both of which depended on the spatial frequency of the stimulus. These results support past work which suggests that the center and surround components of retinal ganglion cell receptive fields are not necessarily circular or concentric, and that they may actually consist of smaller subareas.


1997 ◽  
Vol 78 (4) ◽  
pp. 2048-2060 ◽  
Author(s):  
Steven H. Devries ◽  
Denis A. Baylor

DeVries, Steven H. and Denis A. Baylor. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78: 2048–2060, 1997. The arrangement of ganglion cell receptive fields on the retinal surface should constrain several properties of vision, including spatial resolution. Anatomic and physiological studies on the mammalian retina have shown that the receptive fields of several types of ganglion cells tile the retinal surface, with the degree of receptive field overlap apparently being similar for the different classes. It has been difficult to test the generality of this arrangement, however, because it is hard to sample many receptive fields in the same preparation with conventional single-unit recording. In our experiments, the response properties and receptive fields of up to 80 neighboring ganglion cells in the isolated rabbit retina were characterized simultaneously by recording with a multielectrode array. The cells were divided into 11 classes on the basis of their characteristic light responses and the temporal structures of their impulse trains. The mosaic arrangement of receptive fields for cells of a given class was examined after the spatial profile of each receptive field was fitted with a generalized Gaussian surface. For eight cell classes the mosaic arrangement was similar: the profiles of neighboring cells approached each other at the 1-σ border. Thus field centers were 2 σ apart. The layout of fields for the remaining three classes was not well characterized because the fields were poorly fitted by a single Gaussian or because the cells responded selectively to movement. The 2-σ center-center spacing may be a general principle of functional organization that minimizes spatial aliasing and confers a uniform spatial sensitivity on the ganglion cell population.


1987 ◽  
Vol 58 (2) ◽  
pp. 267-275 ◽  
Author(s):  
R. E. Soodak ◽  
R. M. Shapley ◽  
E. Kaplan

1. The orientation tuning of lateral geniculate nucleus (LGN) neurons and retinal ganglion cells (recorded as S potentials in the LGN) was investigated with drifting grating stimuli. 2. Results were compared with a quantitative model, in which receptive fields were constructed from linear, elliptical Gaussian center and surround subunits, and responses could be predicted to gratings of any spatial frequency at any orientation. 3. The orientation tuning of X and Y retinal ganglion cells and LGN neurons was shown to result from the linear mechanism of receptive-field elongation, as data from these cells could be well fit with this model. 4. The responses of LGN neurons and their input retinal ganglion cells were compared. The orientation tuning of LGN neurons was found to be a reflection of the tuning of their retinal inputs, showing that neither intrageniculate neural interactions nor the corticogeniculate projection play any role in LGN orientation selectivity.


Sign in / Sign up

Export Citation Format

Share Document