sensitivity curves
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Nikolay Granichin ◽  
Grigory Volkov ◽  
Yuri Petrov ◽  
Marina Volkova

The randomized method of Sign-Perturbed Sums (SPS) is applied within the framework of the incubation time approach to evaluate the dynamic strength of ice. The experimental data of [Carney et al., 2006; Wu and Prakash, 2015; Saletti et al., 2019] is analysed in order to estimate strength parameters of ice and describe the observed strain-rate sensitivity curves. The independence of incubation time value on the ice temperature is established in contrast with the significant dependency of the critical stress parameter. The obtained confidence interval of the spalled ice is in good correspondence with the scatter observed experimentally.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6612
Author(s):  
Erika Stracqualursi ◽  
Rodolfo Araneo ◽  
Salvatore Celozzi

Research on corona discharge, shared by physics, chemistry and electrical engineering, has not arrested yet. As a dissipative process, the development of corona increases the resistive losses of transmission lines and enhances the line capacitance locally. Introducing additional losses and propagation delay, along the line, non-linearity and non-uniformity of the line parameters; therefore, corona should not be neglected. The present work is meant to provide the reader with comprehensive information on the corona macroscopic phenomenology and development, referring to the most relevant contributions in the literature on this subject. The models proposed in the literature for the simulation of the corona development are reviewed in detail, and sensitivity curves are provided to highlight their dependence on the input parameters.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1156
Author(s):  
Wenjie Qi ◽  
Bowen Liu ◽  
Tian Liang ◽  
Jian Chen ◽  
Deyong Chen ◽  
...  

This paper presents a micro-electromechanical systems (MEMS)-based integrated triaxial electrochemical seismometer, which can detect three-dimensional vibration. By integrating three axes, the integrated triaxial electrochemical seismometer is characterized by small volume and high symmetry. The numerical simulation results inferred that the integrated triaxial electrochemical seismometer had excellent independence among three axes. Based on the experimental results, the integrated triaxial electrochemical seismometer had the advantage of small axial crosstalk and could detect vibration in arbitrary directions. Furthermore, compared with the uniaxial electrochemical seismometer, the integrated triaxial electrochemical seismometer had similar sensitivity curves ranging from 0.01 to 100 Hz. In terms of random ground motion response, high consistencies between the developed integrated triaxial electrochemical seismometer and the uniaxial electrochemical seismometer could be easily observed, which indicated that the developed integrated triaxial electrochemical seismometer produced comparable noise levels to those of the uniaxial electrochemical seismometer. These results validated the performance of the integrated triaxial electrochemical seismometer, which has a good prospect in the field of deep geophysical exploration and submarine seismic monitoring.


Author(s):  
Nicolás Cardiel ◽  
Jaime Zamorano ◽  
Salvador Bará ◽  
Alejandro Sánchez de Miguel ◽  
Cristina Cabello ◽  
...  

Abstract Although the use of RGB photometry has exploded in the last decades due to the advent of high-quality and inexpensive digital cameras equipped with Bayer-like color filter systems, there is surprisingly no catalogue of bright stars that can be used for calibration purposes. Since due to their excessive brightness, accurate enough spectrophotometric measurements of bright stars typically cannot be performed with modern large telescopes, we have employed historical 13-color medium-narrow-band photometric data, gathered with quite reliable photomultipliers, to fit the spectrum of 1346 bright stars using stellar atmosphere models. This not only constitutes a useful compilation of bright spectrophotometric standards well spread in the celestial sphere, the UCM library of spectrophotometric spectra, but allows the generation of a catalogue of reference RGB magnitudes, with typical random uncertainties ∼0.01 mag. For that purpose, we have defined a new set of spectral sensitivity curves, computed as the median of 28 sets of empirical sensitivity curves from the literature, that can be used to establish a standard RGB photometric system. Conversions between RGB magnitudes computed with any of these sets of empirical RGB curves and those determined with the new standard photometric system are provided. Even though particular RGB measurements from single cameras are not expected to provide extremely accurate photometric data, the repeatability and multiplicity of observations will allow access to a large amount of exploitable data in many astronomical fields, such as the detailed monitoring of light pollution and its impact on the night sky brightness, or the study of meteors, solar system bodies, variable stars, and transient objects. In addition, the RGB magnitudes presented here make the sky an accessible and free laboratory for the calibration of the cameras themselves.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kai Schmitz

Abstract Gravitational waves (GWs) from strong first-order phase transitions (SFOPTs) in the early Universe are a prime target for upcoming GW experiments. In this paper, I construct novel peak-integrated sensitivity curves (PISCs) for these experiments, which faithfully represent their projected sensitivities to the GW signal from a cosmological SFOPT by explicitly taking into account the expected shape of the signal. Designed to be a handy tool for phenomenologists and model builders, PISCs allow for a quick and systematic comparison of theoretical predictions with experimental sensitivities, as I illustrate by a large range of examples. PISCs also offer several advantages over the conventional power-law-integrated sensitivity curves (PLISCs); in particular, they directly encode information on the expected signal-to-noise ratio for the GW signal from a SFOPT. I provide semianalytical fit functions for the exact numerical PISCs of LISA, DECIGO, and BBO. In an appendix, I moreover present a detailed review of the strain noise power spectra of a large number of GW experiments. The numerical results for all PISCs, PLISCs, and strain noise power spectra presented in this paper can be downloaded from the Zenodo online repository [1]. In a companion paper [2], the concept of PISCs is used to perform an in-depth study of the GW signal from the cosmological phase transition in the real-scalar-singlet extension of the standard model. The PISCs presented in this paper will need to be updated whenever new theoretical results on the expected shape of the signal become available. The PISC approach is therefore suited to be used as a bookkeeping tool to keep track of the theoretical progress in the field.


2020 ◽  
Vol 35 (36) ◽  
pp. 2044025
Author(s):  
A. V. Grobov ◽  
N. M. Levashko

The framework of nonrelativistic effective field theory (NREFT) aims to generalize the standard analysis of direct detection experiments in terms of spin-dependent (SD) and spin-independent (SI) interactions. Here we performed EFT analysis and obtained sensitivity curves for liquid argon detectors to scattering of dark matter (DM) particles in case of different interaction models. DM velocity distribution and experimental dependencies are also described.


Author(s):  
Roya Salehzadeh ◽  
Nicholas Candelino ◽  
Mohammad Javad Khodaei ◽  
Amin Mehrvarz ◽  
Nader Jalili

Abstract A numerical parameter sensitivity analysis is performed on the bending and torsional vibrations of a flexural-torsional vibrating beam gyroscope model. The gyroscope analyzed in this work is comprised of a rotating cantilever beam with a point-mass attached to its free end and a piezoelectric actuator fixed to a portion of its length. The governing equations of motion are derived using extended Hamilton’s principle and the steady-state magnitude response of the system is obtained through frequency domain methods. A sensitivity analysis is then carried out for the parameters including rotational speed of the base, the length of the beam, the location of the piezoelectric patch, and the location of the added point mass along the beam’s length. It is observed that, in the region surrounding specific configurations, small variations in the rotation rate, beam length and the location of the piezoelectric patch will result in significant changes to the amplitudes of the coupled vibrations and produce peaks in the sensitivity curves. Further, the amplitude of vibration tends to increase as the location of the added point-mass is moved closer to the free end. Generally, the bending modes are more sensitive to all of these parameter variations than are the torsional modes.


2020 ◽  
Vol 498 (3) ◽  
pp. 4426-4432 ◽  
Author(s):  
Manoel F Sousa ◽  
Jaziel G Coelho ◽  
José C N de Araujo

ABSTRACT In our previous article we have explored the continuous gravitational waves (GWs) emitted from rotating magnetized white dwarfs (WDs) and their detectability by the planned GW detectors such as Laser Interferometer Space Antenna (LISA), Deci-hertz Interferometer Gravitational wave Observatory (DECIGO), and Big Bang Observer (BBO). Here, GWs’ emission due to magnetic deformation mechanism is applied for soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs), described as fast-spinning and magnetized WDs. Such emission is caused by the asymmetry around the rotation axis of the star generated by its own intense magnetic field. Thus, for the first time in the literature, the GW counterparts for SGRs/AXPs are described as WD pulsars. We find that some SGRs/AXPs can be observed by the space detectors BBO and DECIGO. In particular, 1E 1547.0−5408 and SGR 1806−20 could be detected in 1 yr of observation, whereas SGR 1900+14, CXOU J171405.7−381031, Swift J1834.9−0846, SGR 1627−41, PSR J1622−4950, SGR J1745−2900, and SGR 1935+2154 could be observed with a 5-yr observation time. The sources XTE J1810−197, SGR 0501+4516, and 1E 1048.1−5937 could also be seen by BBO and DECIGO if these objects have $M_{\mathrm{ WD}} \lesssim 1.3 \, \mathrm{M}_{\odot }$ and $M_{\mathrm{ WD}} \lesssim 1.2 \, \mathrm{M}_{\odot }$, respectively. We also found that SGRs/AXPs as highly magnetized neutron stars are far below the sensitivity curves of BBO and DECIGO. This result indicates that a possible detection of continuous GWs originated from these objects would corroborate the WD pulsar model.


2020 ◽  
Vol 117 (26) ◽  
pp. 15112-15122 ◽  
Author(s):  
Mary Caswell Stoddard ◽  
Harold N. Eyster ◽  
Benedict G. Hogan ◽  
Dylan H. Morris ◽  
Edward R. Soucy ◽  
...  

Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds’ extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.


Sign in / Sign up

Export Citation Format

Share Document