Receptive-field properties of neurons in binocular and monocular segments of striate cortex in cats raised with binocular lid suture

1978 ◽  
Vol 41 (2) ◽  
pp. 322-337 ◽  
Author(s):  
D. W. Watkins ◽  
J. R. Wilson ◽  
S. M. Sherman

1. We studied the receptive fields of 171 striate cortical neurons from 17 cats raised with binocular lid suture. Of these, 102 fields were within 10 degrees of the area centralis and the remaining 69 were at least 38 degrees from the vertical meridian. 2. Based on their different response properties, cells were divided into three broad groups: the mappable cells (49%) had clearly defined receptive fields, the unmappable cells (31%) were activated by visual stimuli but had diffuse fields which could not be hand plotted, and the visually inexcitable cells (20%) could not be activated by visual stimuli. Very few (less than or equal to 12% of the total sample) normal simple or complex cells could be found. 3. Orientation selectivity was assessed in these cells. Only 12% displayed orientation selectivity within normal bounds, and these were all mappable cells. None of the unmappable cells had discernible orientation selectivity. 4. Ocular dominance was assessed for 62 of the centrally located receptive fields. Among mappable cells, there was an abnormally low proportion of binocular fields, while no such abnormality was seen for unmappable cells. 5. For 47 of the neurons, average response histograms were compiled for moving stimuli of various parameters in an effort to evoke the maximum discharge or peak response. This peak response was normal for mappable cells but reduced for unmappable cells. 6. We devised a technique for studying potential inhibitory receptive-field zones in these neurons, validated the method in normal striate cortex, and used it to test 20 mappable cells in the lid-sutured cats. None showed the pattern of strong inhibitory side bands seen in normal simple cells, although six showed weak or abnormal inhibitory zones. Interestingly, six of the seven visually inexcitable cells tested by this method had purely inhibitory receptive fields. 7. The effects of binocular suture were essentially identical for the binocular and monocular segments since the cell types and their response properties did not differ between these two areas of cortex. Furthermore, the cortical monocular segments of these cats seemed qualitatively different from the deprived cortical monocular segment after monocular suture. This extends an analogous difference for these cats reported for the monocular segments of the lateral geniculate nucleus. We thus conclude that monocularly and binocularly sutured cats develop by qualitatively different mechanisms. For the former, competition between central synapses related to each eye is a prominent feature of geniculocortical development, whereas, for the latter, such specific forms of geniculocortical development may not obtain.

1976 ◽  
Vol 39 (3) ◽  
pp. 512-533 ◽  
Author(s):  
J. R. Wilson ◽  
S. M. Sherman

1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine how receptivefield properties changed with eccentricity in the visual field.2. We classified 98 cells as "simple," 80 as "complex," 21 as "hypercomplex," and 15 in other categories. The proportion of complex cells relative to simple cells increased monotonically with receptive-field eccenticity.3. Direction selectivity and preferred orientation did not measurably change with eccentricity. Through most of the binocular segment, this was also true for ocular dominance; however, at the edge of the binocular segment, there were more fields dominated by the contralateral eye.4. Cells had larger receptive fields, less orientation selectivity, and higher preferred speeds with increasing eccentricity. However, these changes were considerably more pronounced for complex than for simple cells.5. These data suggest that simple and complex cells analyze different aspects of a visual stimulus, and we provide a hypothesis which suggests that simple cells analyze input typically from one (or a few) geniculate neurons, while complex cells receive input from a larger region of geniculate neurons. On average, this region is invariant with eccentricity and, due to a changing magnification factor, complex fields increase in size with eccentricity much more than do simple cells. For complex cells, computations of this geniculate region transformed to cortical space provide a cortical extent equal to the spread of pyramidal cell basal dendrites.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


1985 ◽  
Vol 53 (5) ◽  
pp. 1158-1178 ◽  
Author(s):  
B. O. Braastad ◽  
P. Heggelund

The functional organization of the receptive field of neurons in striate cortex of kittens from 8 days to 3 mo of age was studied by extracellular recordings. A quantitative dual-stimulus technique was used, which allowed for analysis of both enhancement and suppression zones in the receptive field. Furthermore the development of orientation selectivity was studied quantitatively in the same cells. Already in the youngest kittens the receptive fields were spatially organized like adult fields, with a central zone and adjacent flanks that responded in opposite manner to the light stimulus. The relative suppression in the subzones was as strong as in adult cells. Both simple and complex cells were found from 8 days. The receptive fields were like magnified adult fields. The width of the dominant discharge-field zone and the distance between the positions giving maximum discharge and maximum suppression decreased with age in the same proportions. The decrease could be explained by a corresponding decrease of the receptive-field-center size of retinal ganglion cells. Forty percent of the cells were orientation selective before 2 wk, and the fraction increased to 94% at 4 wk. Cells whose responses could be attenuated to at least half of the maximal response by changes of slit orientation were termed orientation selective. The half-width of the orientation-tuning curves narrowed during the first 5 wk, and this change was most marked in simple cells. The ability of the cells to discriminate between orientations in statistical terms was weak in the youngest kittens due to a large response variability, and showed a more pronounced development than the half-width did. The orientation-tuning curves were fitted by an exponential function, which showed the shape to be adultlike in all age groups. Two kittens were dark reared until recording at 1 mo of age. The spatial receptive-field organization and the orientation selectivity in these kittens were similar to normal-reared kittens at 1 mo. The responsivity of the cells of the dark-reared kittens was lower, and the latency before firing was longer than in the normal-reared kittens of the same age, and these response properties were more similar to those in 1- to 2-wk-old normal kittens. Our results indicate that the spatial organization of the receptive field is innate in most cells and that visual experience is unnecessary for the organization to be maintained and for the receptive-field width to mature during the first month postnatally.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (2) ◽  
pp. 822-831 ◽  
Author(s):  
James R. Müller ◽  
Andrew B. Metha ◽  
John Krauskopf ◽  
Peter Lennie

We examined in anesthetized macaque how the responses of a striate cortical neuron to patterns inside the receptive field were altered by surrounding patterns outside it. The changes in a neuron's response brought about by a surround are immediate and transient: they arise with the same latency as the response to a stimulus within the receptive field (this argues for a source locally in striate cortex) and become less effective as soon as 27 ms later. Surround signals appeared to exert their influence through divisive interaction (normalization) with those arising in the receptive field. Surrounding patterns presented at orientations slightly oblique to the preferred orientation consistently deformed orientation tuning curves of complex (but not simple) cells, repelling the preferred orientation but without decreasing the discriminability of the preferred grating and ones at slightly oblique orientations. By reducing responsivity and changing the tuning of complex cells locally in stimulus space, surrounding patterns reduce the correlations among responses of neurons to a particular stimulus, thus reducing the redundancy of image representation.


2003 ◽  
Vol 89 (2) ◽  
pp. 1003-1015 ◽  
Author(s):  
W. Martin Usrey ◽  
Michael P. Sceniak ◽  
Barbara Chapman

The ferret has become a model animal for studies exploring the development of the visual system. However, little is known about the receptive-field structure and response properties of neurons in the adult visual cortex of the ferret. We performed single-unit recordings from neurons in layer 4 of adult ferret primary visual cortex to determine the receptive-field structure and visual-response properties of individual neurons. In particular, we asked what is the spatiotemporal structure of receptive fields of layer 4 neurons and what is the orientation selectivity of layer 4 neurons? Receptive fields of layer 4 neurons were mapped using a white-noise stimulus; orientation selectivity was determined using drifting, sine-wave gratings. Our results show that most neurons (84%) within layer 4 are simple cells with elongated, spatially segregated,on and off subregions. These neurons are also selective for stimulus orientation; peaks in orientation-tuning curves have, on average, a half-width at half-maximum response of 21.5 ± 1.2° (mean ± SD). The remaining neurons in layer 4 (16%) lack orientation selectivity and have center/surround receptive fields. Although the organization of geniculate inputs to layer 4 differs substantially between ferret and cat, our results demonstrate that, like in the cat, most neurons in ferret layer 4 are orientation-selective simple cells.


1986 ◽  
Vol 55 (5) ◽  
pp. 1057-1075 ◽  
Author(s):  
C. J. Bruce ◽  
R. Desimone ◽  
C. G. Gross

Although the tectofugal system projects to the primate cerebral cortex by way of the pulvinar, previous studies have failed to find any physiological evidence that the superior colliculus influences visual activity in the cortex. We studied the relative contributions of the tectofugal and geniculostriate systems to the visual properties of neurons in the superior temporal polysensory area (STP) by comparing the effects of unilateral removal of striate cortex, the superior colliculus, or of both structures. In the intact monkey, STP neurons have large, bilateral receptive fields. Complete unilateral removal of striate cortex did not eliminate visual responses of STP neurons in the contralateral visual hemifield; rather, nearly half the cells still responded to visual stimuli in the hemifield contralateral to the lesion. Thus the visual properties of STP neurons are not completely dependent on the geniculostriate system. Unilateral striate lesions did affect the response properties of STP neurons in three ways. Whereas most STP neurons in the intact monkey respond similarly to stimuli in the two visual hemifields, responses to stimuli in the hemifield contralateral to the striate lesion were usually weaker than responses in the ipsilateral hemifield. Whereas the responses of many STP neurons in the intact monkey were selective for the direction of stimulus motion or for stimulus form, responses in the hemifield contralateral to the striate lesion were not selective for either motion or form. Whereas the median receptive field in the intact monkey extended 80 degrees into the contralateral visual field, the receptive fields of cells with responses in the contralateral field that survived the striate lesions had a median border that extended only 50 degrees into the contralateral visual field. Removal of both striate cortex and the superior colliculus in the same hemisphere abolished the responses of STP neurons to visual stimuli in the hemifield contralateral to the combined lesion. Nearly 80% of the cells still responded to visual stimuli in the hemifield ipsilateral to the lesion. Unilateral removal of the superior colliculus alone had only small effects on visual responses in STP. Receptive-field size and visual response strength were slightly reduced in the hemifield contralateral to the collicular lesion. As in the intact monkey, selectivity for stimulus motion or form were similar in the two visual hemifields. We conclude that both striate cortex and the superior colliculus contribute to the visual responses of STP neurons. Striate cortex is crucial for the movement and stimulus specificity of neurons in STP.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 74 (5) ◽  
pp. 2100-2125 ◽  
Author(s):  
D. M. Snodderly ◽  
M. Gur

1. In alert macaque monkeys, multiunit activity is encountered in an alternating sequence of silent and spontaneously active zones as an electrode is lowered through the striate cortex (V1). 2. Individual neurons that are spontaneously active in the dark usually have a maintained discharge in the light. Because both types of discharge occur in the absence of deliberate stimulation, we call them the "ongoing" activity. The zones with ongoing activity correspond to the cytochrome oxidase (CytOx)-rich geniculorecipient layers 4A, 4C, and 6, whereas the adjacent layers 2/3, 4B, and 5 have little ongoing activity. 3. The widths of receptive field activating regions (ARs) are positively correlated with the cells' ongoing activity. Cells with larger ARs are preferentially located in the CytOx-rich (input) layers, and many are unselective for stimulus orientation. However, approximately 90% of the cells in the silent layers are orientation selective, and they often have small ARs. 4. The laminar distribution of selectivity for orientation and direction of movement in alert animals is consistent with earlier results from anesthetized animals, but the laminar distribution of AR widths differs. In alert macaques, the ARs of direction-selective cells in layer 4B and of orientation-selective cells in layer 5 are among the smallest in V1. 5. Our findings indicate that the input layers of V1 (4A, 4C, and 6) have a diversity of AR widths, including large ones. Cortical processing produces receptive fields in some of the output layers (4B and 5) that are restricted to small ARs with high resolution of spatial position. These results imply potent lateral and/or interlaminar interactions in alert animals in early cortical processing. The diversity of AR widths generated in V1 may contribute to detection of fine detail in the presence of contrasting backgrounds--the early stages of figure-ground discrimination.


2021 ◽  
Vol 118 (49) ◽  
pp. e2115772118
Author(s):  
Aneesha K. Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M. Rosenow ◽  
Lee E. Miller ◽  
...  

Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures—the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.


Sign in / Sign up

Export Citation Format

Share Document