cuneate nucleus
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 12)

H-INDEX

44
(FIVE YEARS 0)

2021 ◽  
Vol 118 (49) ◽  
pp. e2115772118
Author(s):  
Aneesha K. Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M. Rosenow ◽  
Lee E. Miller ◽  
...  

Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures—the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.


2021 ◽  
Author(s):  
Qinpu He ◽  
Christopher S Versteeg ◽  
Aneesha K Suresh ◽  
Lee E Miller ◽  
Sliman J Bensmaia

To achieve stable and precise movement execution, the sensorimotor system integrates exafferent sensory signals originating from interactions with the external world and reafferent signals caused by our own movements. This barrage of sensory information is regulated such that behaviorally relevant signals are boosted at the expense of irrelevant ones. For example, sensitivity to touch is reduced during movement - when cutaneous signals caused by skin stretch are expected and uninteresting - a phenomenon reflected in a decreased cutaneous responsiveness in thalamus and cortex. Some evidence suggests that movement gating of touch may originate from the cuneate nucleus (CN), the first recipient of signals from tactile nerve fibers along the dorsal columns medial lemniscal pathway. To test this possibility, we intermittently delivered mechanical pulses to the receptive fields (RFs) of identified cutaneous CN neurons as monkeys performed a reach-to-grasp task. As predicted, we found that the cutaneous responses of individual CN neurons were reduced during movement. However, this movement gating of cutaneous signals was observed for CN neurons with RFs on the arm but not those with RFs on the hand. We conclude that sensory gating occurs in the first processing stage along the somatosensory neuraxis and sculpts incoming signals according to their task relevance.


2021 ◽  
Author(s):  
Aneesha K Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M Rosenow ◽  
Lee E Miller ◽  
...  

In primates, the responses of individual neurons in primary somatosensory cortex (S1) reflect convergent input from multiple classes of nerve fibers and are selective for behaviorally relevant stimulus features. The conventional view is that these response properties reflect computations that are effected in cortex, implying that sensory signals are not meaningfully processed in the two intervening structures - the Cuneate Nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in CN to a battery of stimuli that have been extensively used to characterize tactile coding, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their S1 counterparts than they are to their inputs: CN neurons receive input from multiple sub-modalities, have spatially complex receptive fields, and exhibit selectivity for geometric features. Thus, CN plays a key role in the processing of tactile information.


Author(s):  
Christopher Versteeg ◽  
Joshua M. Rosenow ◽  
Sliman J Bensmaia ◽  
Lee E Miller

The cuneate nucleus (CN) is among the first sites along the neuraxis where proprioceptive signals can be integrated, transformed, and modulated. The objective of the study was to characterize the proprioceptive representations in CN. To this end, we recorded from single CN neurons in three monkeys during active reaching and passive limb perturbation. We found that many neurons exhibited responses that were tuned approximately sinusoidally to limb movement direction, as has been found for other sensorimotor neurons. The distribution of their preferred directions (PDs) was highly non-uniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle. We also found that the responses of proprioceptive CN neurons tended to be modestly amplified during active reaching movements compared to passive limb perturbations, in contrast to cutaneous CN neurons whose responses were not systematically different in the active and passive conditions. Somatosensory signals thus seem to be subject to a "spotlighting" of relevant sensory information rather than uniform suppression as has been suggested previously.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Naoki Yamawaki ◽  
Martinna G Raineri Tapies ◽  
Austin Stults ◽  
Gregory A Smith ◽  
Gordon MG Shepherd

Sensory-guided limb control relies on communication across sensorimotor loops. For active touch with the hand, the longest loop is the transcortical continuation of ascending pathways, particularly the lemnisco-cortical and corticocortical pathways carrying tactile signals via the cuneate nucleus, ventral posterior lateral (VPL) thalamus, and primary somatosensory (S1) and motor (M1) cortices to reach corticospinal neurons and influence descending activity. We characterized excitatory connectivity along this pathway in the mouse. In the lemnisco-cortical leg, disynaptic cuneate→VPL→S1 connections excited mainly layer (L) 4 neurons. In the corticocortical leg, S1→M1 connections from L2/3 and L5A neurons mainly excited downstream L2/3 neurons, which excite corticospinal neurons. The findings provide a detailed new wiring diagram for the hand/forelimb-related transcortical circuit, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical somatosensory input to cortical motor output to spinal cord.


2021 ◽  
Author(s):  
Christopher Versteeg ◽  
Joshua M Rosenow ◽  
Sliman J Bensmaia ◽  
Lee E Miller

The cuneate nucleus (CN) is among the first sites along the neuraxis where proprioceptive signals can be integrated, transformed, and modulated. The objective of the study was to characterize the proprioceptive representations in CN. To this end, we recorded from single CN neurons in three monkeys during active reaching and passive limb perturbation. We found that many neurons exhibited responses that were tuned approximately sinusoidally to limb movement direction, as has been found for other sensorimotor neurons. The distribution of their preferred directions (PDs) was highly non-uniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle. We also found that the responses of proprioceptive CN neurons tended to be modestly amplified during active reaching movements compared to passive limb perturbations, in contrast to cutaneous CN neurons whose responses were not systematically different in the active and passive conditions. Somatosensory signals thus seem to be subject to a 'spotlighting' of relevant sensory information rather than uniform suppression as has been suggested previously.


Author(s):  
Christopher Versteeg ◽  
Raeed H Chowdhury ◽  
Lee E Miller
Keyword(s):  

2021 ◽  
Author(s):  
Naoki Yamawaki ◽  
Martinna G. Raineri Tapies ◽  
Austin M. Stults ◽  
Gregory A. Smith ◽  
Gordon M. G. Shepherd

Sensory-guided limb control relies on communication across sensorimotor loops. For active touch with the hand, the longest loop is the transcortical continuation of ascending pathways, particularly the lemnisco-cortical and corticocortical pathways carrying tactile signals via the cuneate nucleus, ventral posterior lateral (VPL) thalamus, and primary somatosensory (S1) and motor (M1) cortices to reach corticospinal neurons and influence descending activity. We characterized excitatory connectivity along this pathway in the mouse. In the lemnisco-cortical leg, disynaptic cuneate→VPL→S1 connections excited mainly layer (L) 4 neurons. In the corticocortical leg, S1→M1 connections from L2/3 and L5A neurons mainly excited downstream L2/3 neurons, which excite corticospinal neurons. The findings provide a detailed new wiring diagram for the hand/forelimb-related transcortical circuit, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical somatosensory input to cortical motor output to spinal cord.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adel Parvizi-Fard ◽  
Mahmood Amiri ◽  
Deepesh Kumar ◽  
Mark M. Iskarous ◽  
Nitish V. Thakor

AbstractTo obtain deeper insights into the tactile processing pathway from a population-level point of view, we have modeled three stages of the tactile pathway from the periphery to the cortex in response to indentation and scanned edge stimuli at different orientations. Three stages in the tactile pathway are, (1) the first-order neurons which innervate the cutaneous mechanoreceptors, (2) the cuneate nucleus in the midbrain and (3) the cortical neurons of the somatosensory area. In the proposed network, the first layer mimics the spiking patterns generated by the primary afferents. These afferents have complex skin receptive fields. In the second layer, the role of lateral inhibition on projection neurons in the cuneate nucleus is investigated. The third layer acts as a biomimetic decoder consisting of pyramidal and cortical interneurons that correspond to heterogeneous receptive fields with excitatory and inhibitory sub-regions on the skin. In this way, the activity of pyramidal neurons is tuned to the specific edge orientations. By modifying afferent receptive field size, it is observed that the larger receptive fields convey more information about edge orientation in the first spikes of cortical neurons when edge orientation stimuli move across the patch of skin. In addition, the proposed spiking neural model can detect edge orientation at any location on the simulated mechanoreceptor grid with high accuracy. The results of this research advance our knowledge about tactile information processing and can be employed in prosthetic and bio-robotic applications.


2020 ◽  
Vol 225 (7) ◽  
pp. 2177-2192
Author(s):  
Yume Uemura ◽  
Tahsinul Haque ◽  
Fumihiko Sato ◽  
Yumi Tsutsumi ◽  
Haruka Ohara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document