Altered synaptic transmission in dentate gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro

1986 ◽  
Vol 55 (4) ◽  
pp. 739-750 ◽  
Author(s):  
E. J. Green ◽  
W. T. Greenough

Pre- and postsynaptic responses to activation of medial perforant path (MPP) axons were examined in hippocampal slices taken from rats reared for 3-4 wk in relatively complex (EC) or individual cage (IC) environments. Three types of extracellular field potentials were recorded in the infrapyramidal blade of the dentate gyrus: 1) granule cell population spikes (PSs), which reflect the number and synchrony of discharging granule cells (2), 2) population excitatory postsynaptic potentials (EPSPs), which reflect the amount of excitatory synaptic current flow into dendrites (28), and 3) presynaptic fiber volleys (FVs), which reflect the number of activated axons (28). Stimulation of the MPP evoked significantly larger PSs in slices taken from EC rats. There was no significant effect of rearing environment on PS/EPSP relationships. The slopes of EPSPs recorded at the site of synaptic activation in the dentate molecular layer and at the major current source in the dentate granule cell layer were significantly greater in slices taken from EC rats. The presynaptic FV was recorded at the site of synaptic activation in the molecular layer. FV amplitude did not differ significantly as a function of rearing environment. To examine possible differences in tissue impedance, granule cells were activated by stimulating granule cell axons in the dentate hilus and recording the antidromic PS in the granule cell layer. Antidromic PS amplitude was not significantly affected by rearing environment. The relative permanence of the experience-dependent alterations in synaptic transmission was assessed by comparing slices taken from rats that had been reared for 4 wk in complex environments followed by 3-4 wk in individual cages with those from rats reared for 7-8 wk in individual cages. There were no significant differences in MPP synaptic transmission between these groups of animals. The results suggest that experience in a relatively complex environment is associated with greater MPP synaptic transmission arising from an increased synaptic input to granule cells; the greater MPP synaptic transmission associated with behavioral experience can occur independent of behavioral state, influences from extrahippocampal brain regions and intrahippocampal inhibitory activity; and the experience-dependent synaptic alterations in the dentate gyrus are transient, in contrast to experience-dependent morphological alterations described in occipital cortex. The possible relationship of these alterations to the phenomenon of long-term enhancement is discussed.

2001 ◽  
Vol 85 (3) ◽  
pp. 1067-1077 ◽  
Author(s):  
Jean-Pierre Wuarin ◽  
F. Edward Dudek

Temporal lobe epilepsy is usually associated with a latent period and an increased seizure frequency following a precipitating insult. After kainate treatment, the mossy fibers of the dentate gyrus are hypothesized to form recurrent excitatory circuits between granule cells, thus leading to a progressive increase in the excitatory input to granule cells. Three groups of animals were studied as a function of time after kainate treatment: 1–2 wk, 2–4 wk, and 10–51 wk. All the animals studied 10–51 wk after kainate treatment were observed to have repetitive spontaneous seizures. Whole cell patch-clamp recordings in hippocampal slices showed that the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in granule cells increased with time after kainate treatment. This increased excitatory synaptic input was correlated with the intensity of the Timm stain in the inner molecular layer (IML). Flash photolysis of caged glutamate applied in the granule cell layer evoked repetitive EPSCs in 10, 32, and 66% of the granule cells at the different times after kainate treatment. When inhibition was reduced with bicuculline, photostimulation of the granule cell layer evoked epileptiform bursts of action potentials only in granule cells from rats 10–51 wk after kainate treatment. These data support the hypothesis that kainate-induced mossy fiber sprouting in the IML results in the progressive formation of aberrant excitatory connections between granule cells. They also suggest that the probability of occurrence of electrographic seizures in the dentate gyrus increases with time after kainate treatment.


2000 ◽  
Vol 83 (4) ◽  
pp. 2421-2430 ◽  
Author(s):  
Yo Otsu ◽  
Eiichi Maru ◽  
Hisayuki Ohata ◽  
Ichiro Takashima ◽  
Riichi Kajiwara ◽  
...  

In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca2+. The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizurelike activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.


1984 ◽  
Vol 60 (4) ◽  
pp. 845-847 ◽  
Author(s):  
Uros Roessmann ◽  
Thamnook Wongmongkolrit

✓ Dysplastic gangliocytoma of the cerebellum is reported in a newborn. It is characterized by large ganglion cells in the molecular layer and premature attenuation of the external granule-cell layer. The internal granule-cell layer appears rarefied but otherwise normally organized. It appears that in this disease the migrating granule cells mature too early and become arrested in the molecular layer, because of their abnormal forms, while others continue to migrate and grow in size in their normal location in the inner granule-cell layer.


2000 ◽  
Vol 83 (2) ◽  
pp. 693-704 ◽  
Author(s):  
Michael Lynch ◽  
Thomas Sutula

Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABAAreceptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 μM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid–induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after ≥1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABAA receptor–dependent recurrent inhibitory circuits and 10 mM [Ca2+]o to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats ( n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 ± 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.


1976 ◽  
Vol 39 (2) ◽  
pp. 384-393 ◽  
Author(s):  
F. E. Dudek ◽  
S. A. Deadwyler ◽  
C. W. Cotman ◽  
G. Lynch

Intracellular responses were recorded in vitro from the denate granule cell layer of hippocampal slices prepared from adult rats. Spontaneous activity of granule cells in vitro consisted of action potentials and small, graded depolarizations, presumably of synaptic origin. Granule cells could be activated by injection of depolarizing current or release of hyperpolarizing current. Individual granule cells spatially summed input from the perforant path and fired multiple action potentials in vitro following strong presynaptic volleys. Depolarization decreased and hyperpolarization increased the EPSP amplitude, which is consistent with a conductance-increase mechanism. Although we could demonstrate postexcitatory inhibition in some cells, granule cells in vitro appeared to receive less inhibitory feedback than in vivo, EPSP amplitude and spike output of granule cells showed frequency potentiation and posttetanic potentiation to perforant path stimulation. These intracellular responses in vitro complement some of the findings from field-potential analyses of the dentate gyrus in intact animals.


1990 ◽  
Vol 110 (4) ◽  
pp. 1275-1283 ◽  
Author(s):  
K S O'Shea ◽  
J S Rheinheimer ◽  
V M Dixit

The patterns of deposition of thrombospondin (TSP), a trimeric extracellular matrix glycoprotein, were determined during the initial establishment of the external granule cell layer and the subsequent inward migration of granule cells forming the molecular and (internal) granule cell layers. The early homogeneous deposition of TSP became restricted to the rhombic lip in the region of granule cell exit from the neuroepithelium, and was present between migrating granule cells. During the later inward migration of granule cells, little TSP was associated with dividing granule cells; it was enriched in premigratory granule cells. With the cessation of migration, TSP was lost except in association with fasciculating axons in the molecular layer where staining persisted briefly. At the EM level, TSP was associated with the leading process of granule cells as they associated with Bergmann glial cells and migrated through the molecular layer. TSP was present within granule cell axons; Purkinje cells and their dendrites, as well as Bergmann glial fibers and endfeet were negative for TSP. When anti-TSP antibodies were added to explant cultures of cerebellar cortex during active granule cell migration, a dose-dependent inhibition of migration was observed. In control cultures, granule cells migrated into the (internal) granule cell layer, while granule cells exposed to anti-TSP antibodies were arrested within the external granule cell layer. These results suggest that TSP plays an important role in the histogenesis of the cerebellar cortex by influencing granule cell migration.


1995 ◽  
Vol 74 (5) ◽  
pp. 1947-1952 ◽  
Author(s):  
J. S. Schweitzer ◽  
A. Williamson

1. Previous studies in the dentate granule cell layer of the rat hippocampal slice have demonstrated that nonsynaptic, seizurelike prolonged field bursts occur in conditions of low extracellular Ca2+ concentration ([Ca2+]o) and elevated [K+]o. We hypothesize that the extracellular ion concentration changes induced by synaptic activation of dentate granule cells would be sufficient to initiate these nonsynaptic bursts. 2. Using ion-selective electrode recording, we observed large changes in [Ca2+]o (from 1.3 mM baseline to approximately 0.7 mM) and [K+]o (from 3.5 to approximately 12 mM) in the dentate granule cell layer during repetitive electrical stimulation of the perforant path in rat hippocampal slices. Concomitant with these changes, bursts of population spikes similar to those seen during spontaneous prolonged field bursts appeared between the individual stimulus-evoked responses in the dentate gyrus in many of the slices studied (19 of 27). 3. Blockade of N-methyl-D-aspartate (NMDA), non-NMDA, and gamma-aminobutyric acid-A (GABAA)-mediated synaptic transmission during perforant path stimulation resulted in a marked reduction of the ion concentration changes and a loss of both stimulus-evoked and stimulus-independent population spikes in the dentate gyrus. 4. When slices were perfused with solutions containing [Ca2+]o and [K+]o equivalent to those measured during perforant path stimulation (i.e., 0.7 and 12 mM, respectively), spontaneous prolonged field bursts appeared in the dentate gyrus. Addition of NMDA, non-NMDA, and GABAA receptor antagonists did not prevent the occurrence of these spontaneous bursts. 5. We conclude that changes in [Ca2+]o and [K+]o sufficient to produce prolonged field bursts may be created in the dentate granule cell layer by perforant path stimulation. These effects are dependent on synaptic transmission. Once these ionic conditions occur, they are sufficient to trigger prolonged field bursts independent of fast amino-acid-mediated synaptic transmission. A similar mechanism could be important during the interictal-ictal transition in vivo.


2001 ◽  
Vol 890 (2) ◽  
pp. 261-271 ◽  
Author(s):  
Khashayar Dashtipour ◽  
Peter H. Tran ◽  
Maxine M. Okazaki ◽  
J.Victor Nadler ◽  
Charles E. Ribak

Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2223-2232 ◽  
Author(s):  
Joshua B. Rubin ◽  
Yoojin Choi ◽  
Rosalind A. Segal

Sonic hedgehog promotes proliferation of developing cerebellar granule cells. As sonic hedgehog is expressed in the cerebellum throughout life it is not clear why proliferation occurs only in the early postnatal period and only in the external granule cell layer. We asked whether heparan sulfate proteoglycans might regulate sonic hedgehog-induced proliferation and thereby contribute to the specialized proliferative environment of the external granule cell layer. We identified a conserved sequence within sonic hedgehog that is essential for binding to heparan sulfate proteoglycans, but not for binding to the receptor patched. Sonic hedgehog interactions with heparan sulfate proteoglycans promote maximal proliferation of postnatal day 6 granule cells. By contrast, proliferation of less mature granule cells is not affected by sonic hedgehog-proteoglycan interactions. The importance of proteoglycans for proliferation increases during development in parallel with increasing expression of the glycosyltransferase genes, exostosin 1 and exostosin 2. These data suggest that heparan sulfate proteoglycans, synthesized by exostosins, may be critical determinants of granule cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document